## Juergen Schieber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7510634/publications.pdf Version: 2024-02-01



ILIEDCEN SCHIERED

| #  | Article                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.                                                                                                                                                                             | 6.0 | 508       |
| 2  | Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover.<br>Science, 2014, 343, 1244797.                                                                                                                                         | 6.0 | 475       |
| 3  | Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 2013, 341, 1238937.                                                                                                                                                     | 6.0 | 367       |
| 4  | X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater.<br>Science, 2013, 341, 1238932.                                                                                                                                           | 6.0 | 327       |
| 5  | Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover.<br>Science, 2013, 341, 263-266.                                                                                                                                          | 6.0 | 327       |
| 6  | Martian Fluvial Conglomerates at Gale Crater. Science, 2013, 340, 1068-1072.                                                                                                                                                                                             | 6.0 | 326       |
| 7  | Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars.<br>Science, 2014, 343, 1245267.                                                                                                                                            | 6.0 | 323       |
| 8  | Accretion of Mudstone Beds from Migrating Floccule Ripples. Science, 2007, 318, 1760-1763.                                                                                                                                                                               | 6.0 | 308       |
| 9  | Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science, 2013, 341, 1239505.                                                                                                                                                  | 6.0 | 280       |
| 10 | Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343,<br>1244734.                                                                                                                                                       | 6.0 | 246       |
| 11 | Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science, 2013, 341, 1238670.                                                                                                                                                                   | 6.0 | 215       |
| 12 | Curiosity's Mars Hand Lens Imager (MAHLI) Investigation. Space Science Reviews, 2012, 170, 259-317.                                                                                                                                                                      | 3.7 | 185       |
| 13 | Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the <i>Curiosity</i> rover investigations at Gale crater, Mars. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4245-4250.                         | 3.3 | 172       |
| 14 | Bedload transport of mud by floccule ripples—Direct observation of ripple migration processes and their implications. Geology, 2009, 37, 483-486.                                                                                                                        | 2.0 | 158       |
| 15 | The Petrochemistry of Jake_M: A Martian Mugearite. Science, 2013, 341, 1239463.                                                                                                                                                                                          | 6.0 | 134       |
| 16 | Combined SEM and reflected light petrography of organic matter in the New Albany Shale<br>(Devonian-Mississippian) in the Illinois Basin: A perspective on organic pore development with thermal<br>maturation. International Journal of Coal Geology, 2017, 184, 57-72. | 1.9 | 122       |
| 17 | The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions. Earth and Space Science, 2017, 4, 506-539.                                                                                                                 | 1.1 | 117       |
| 18 | Reverse engineering mother nature — Shale sedimentology from an experimental perspective.<br>Sedimentary Geology, 2011, 238, 1-22.                                                                                                                                       | 1.0 | 105       |

JUERGEN SCHIEBER

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Low Upper Limit to Methane Abundance on Mars. Science, 2013, 342, 355-357.                                                                                                                                                                             | 6.0 | 103       |
| 20 | On the origin of silt laminae in laminated shales. Sedimentary Geology, 2017, 360, 22-34.                                                                                                                                                              | 1.0 | 102       |
| 21 | Mud re-distribution in epicontinental basins – Exploring likely processes. Marine and Petroleum<br>Geology, 2016, 71, 119-133.                                                                                                                         | 1.5 | 97        |
| 22 | Lithologically Controlled Subsurface Critical Zone Thickness and Water Storage Capacity Determine<br>Regional Plant Community Composition. Water Resources Research, 2019, 55, 3028-3055.                                                              | 1.7 | 97        |
| 23 | The Microbial Ferrous Wheel in a Neutral pH Groundwater Seep. Frontiers in Microbiology, 2012, 3, 172.                                                                                                                                                 | 1.5 | 90        |
| 24 | Depositional History of the Chhattisgarh Basin, Central India: Constraints from New SHRIMP Zircon<br>Ages. Journal of Geology, 2011, 119, 33-50.                                                                                                       | 0.7 | 83        |
| 25 | Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermal<br>biosphere. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104,<br>14260-14265.                                     | 3.3 | 70        |
| 26 | Varves in marine sediments: A review. Earth-Science Reviews, 2016, 159, 215-246.                                                                                                                                                                       | 4.0 | 69        |
| 27 | Discovery of agglutinated benthic foraminifera in Devonian black shales and their relevance for the redox state of ancient seas. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 271, 292-300.                                                | 1.0 | 63        |
| 28 | Organic matter content and type variation in the sequence stratigraphic context of the Upper<br>Devonian New Albany Shale, Illinois Basin. Sedimentary Geology, 2019, 383, 101-120.                                                                    | 1.0 | 61        |
| 29 | New U-Pb SHRIMP Zircon Ages of the Dhamda Tuff in the Mesoproterozoic Chhattisgarh Basin,<br>Peninsular India: Stratigraphic Implications and Significance of a 1-Ga Thermal-Magmatic Event. Journal<br>of Geology, 2011, 119, 535-548.                | 0.7 | 59        |
| 30 | Shaler: <i>inÂsitu</i> analysis of a fluvial sedimentary deposit on Mars. Sedimentology, 2018, 65, 96-122.                                                                                                                                             | 1.6 | 59        |
| 31 | Sedimentary Facies and Depositional Environment of the Middle Devonian Geneseo Formation of New<br>York, U.S.A Journal of Sedimentary Research, 2015, 85, 1393-1415.                                                                                   | 0.8 | 54        |
| 32 | ChemCam results from the Shaler outcrop in Gale crater, Mars. Icarus, 2015, 249, 2-21.                                                                                                                                                                 | 1.1 | 52        |
| 33 | Encounters with an unearthly mudstone: Understanding the first mudstone found on Mars.<br>Sedimentology, 2017, 64, 311-358.                                                                                                                            | 1.6 | 48        |
| 34 | Evaluating alongâ€strike variation using thinâ€bedded facies analysis, Upper Cretaceous Ferron Notom<br>Delta, Utah. Sedimentology, 2015, 62, 2060-2089.                                                                                               | 1.6 | 47        |
| 35 | Detailed facies analysis of the Upper Cretaceous Tununk Shale Member, Henry Mountains Region, Utah:<br>Implications for mudstone depositional models in epicontinental seas. Sedimentary Geology, 2018, 364,<br>141-159.                               | 1.0 | 46        |
| 36 | U-Pb Age and Hf Isotopic Compositions of Magmatic Zircons from a Rhyolite Flow in the Porcellanite<br>Formation in the Vindhyan Supergroup, Son Valley (India): Implications for Its Tectonic Significance.<br>Journal of Geology, 2017, 125, 367-379. | 0.7 | 43        |

JUERGEN SCHIEBER

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Stratigraphic position of the â^¼1000Ma Sukhda Tuff (Chhattisgarh Supergroup, India) and the 500Ma<br>question. Precambrian Research, 2008, 167, 383-388.                                                                              | 1.2 | 40        |
| 38 | Oxidation of detrital pyrite as a cause for Marcasite Formation in marine lag deposits from the<br>Devonian of the eastern US. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54,<br>1312-1326.                     | 0.6 | 37        |
| 39 | Experimental testing of the transport-durability of shale lithics and its implications for interpreting the rock record. Sedimentary Geology, 2016, 331, 162-169.                                                                      | 1.0 | 36        |
| 40 | Implications of a Newly Dated ca. 1000-Ma Rhyolitic Tuff in the Indravati Basin, Bastar Craton, India.<br>Journal of Geology, 2012, 120, 477-485.                                                                                      | 0.7 | 35        |
| 41 | Shallow-water onlap model for the deposition of Devonian black shales in New York, USA. Geology, 2019, 47, 279-283.                                                                                                                    | 2.0 | 35        |
| 42 | Regional depositional changes and their controls on carbon and sulfur cycling across the<br>Ordovician-Silurian boundary, northwestern Guizhou, South China. Palaeogeography,<br>Palaeoclimatology, Palaeoecology, 2017, 485, 816-832. | 1.0 | 29        |
| 43 | On the origin of a phosphate enriched interval in the Chattanooga Shale (Upper Devonian) of<br>Tennessee—A combined sedimentologic, petrographic, and geochemical study. Sedimentary Geology,<br>2015, 329, 40-61.                     | 1.0 | 25        |
| 44 | Fate of terrigenous organic carbon in muddy clinothems on continental shelves revealed by stratal<br>geometries: Insight from the Adriatic sedimentary archive. Global and Planetary Change, 2021, 203,<br>103539.                     | 1.6 | 25        |
| 45 | An SEM Study of Porosity in the Eagle Ford Shale of Texas—Pore Types and Porosity Distribution in a<br>Depositional and Sequence-stratigraphic Context. , 0, , 167-186.                                                                |     | 24        |
| 46 | SEM Observations on Ion-milled Samples of Devonian Black Shales from Indiana and New<br>York <subtitle>The Petrographic Context of Multiple Pore Types</subtitle> . , 2013, , .                                                        |     | 23        |
| 47 | Association of uranium with macerals in marine black shales: Insights from the Upper Devonian New<br>Albany Shale, Illinois Basin. International Journal of Coal Geology, 2020, 217, 103351.                                           | 1.9 | 20        |
| 48 | Distribution of primary and secondary features in the Pahrump Hills outcrop (Gale crater, Mars) as<br>seen in a Mars Descent Imager (MARDI) "sidewalk―mosaic. Icarus, 2019, 328, 194-209.                                              | 1.1 | 19        |
| 49 | Application of sequence stratigraphic concepts to the Upper Cretaceous Tununk Shale Member of the<br>Mancos Shale Formation, southâ€central Utah: Parasequence styles in shelfal mudstone strata.<br>Sedimentology, 2020, 67, 118-151. | 1.6 | 16        |
| 50 | Composite Particles in Mudstones: Examples from the Late Cretaceous Tununk Shale Member of the Mancos Shale Formation. Journal of Sedimentary Research, 2018, 88, 1319-1344.                                                           | 0.8 | 15        |
| 51 | When a mudstone was actually a "sandâ€ŧ Results of a sedimentological investigation of the<br>bituminous marl formation (Oligocene), Eastern Carpathians of Romania. Sedimentary Geology, 2019,<br>384, 12-28.                         | 1.0 | 13        |
| 52 | Transient atmospheric effects of the landing of the Mars Science Laboratory rover: The emission and dissipation of dust and carbazic acid. Advances in Space Research, 2016, 58, 1066-1092.                                            | 1.2 | 12        |
| 53 | Burrows without a trace—How meioturbation affects rock fabrics and leaves a record of meiobenthos activity in shales and mudstones. Palaontologische Zeitschrift, 2021, 95, 767-791.                                                   | 0.8 | 11        |
| 54 | Decoding the origins and sources of clay minerals in the Upper Cretaceous Tununk Shale of southâ€central Utah: Implications for the pursuit of climate and burial histories. Depositional Record, 2020, 6, 172-191.                    | 0.8 | 10        |

JUERGEN SCHIEBER

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | On the origin and significance of composite particles in mudstones: Examples from the Cenomanian<br>Dunvegan Formation. Sedimentology, 2021, 68, 737-754.                                                                                                       | 1.6 | 10        |
| 56 | Engraved on the rocks—Aeolian abrasion of Martian mudstone exposures and their relationship to<br>modern wind patterns in Gale Crater, Mars. Depositional Record, 2020, 6, 625-647.                                                                             | 0.8 | 9         |
| 57 | Cryptic burrow traces in black shales – a petrographic Rorschach test or the real thing?.<br>Sedimentology, 2021, 68, 2707-2731.                                                                                                                                | 1.6 | 7         |
| 58 | Detecting detrital carbonate in shale successions - Relevance for evaluation of depositional setting and sequence stratigraphic interpretation. Marine and Petroleum Geology, 2021, 130, 105130.                                                                | 1.5 | 7         |
| 59 | Mars is a mirror – Understanding the Pahrump Hills mudstones from a perspective of Earth<br>analogues. Sedimentology, 2022, 69, 2371-2435.                                                                                                                      | 1.6 | 7         |
| 60 | The discovery of widespread agrichnia traces in Devonian black shales of North America: another<br>chapter in the evolving understanding of a "not so anoxic―ancient sea. Palaontologische Zeitschrift,<br>2021, 95, 661.                                       | 0.8 | 6         |
| 61 | Discussion: "Mud dispersal across a Cretaceous prodelta: Stormâ€generated, waveâ€enhanced sediment<br>gravity flows inferred from mudstone microtexture and microfacies―by Plint (), Sedimentology 61,<br>609–647. Sedimentology, 2015, 62, 389-393.            | 1.6 | 4         |
| 62 | Sequence stratigraphic reconstruction of the late Middle Devonian Geneseo Formation of NY, USA:<br>Developing a genetic model for "Upper Devonian―unconventional targets in the Northern<br>Appalachian Basin. Marine and Petroleum Geology, 2022, 138, 105547. | 1.5 | 2         |
| 63 | Correlative conformity or subtle unconformity? The distal expression of a sequence boundary in the<br>Upper Cretaceous Mancos Shale, Henry Mountains Region, Utah, U.S.A Journal of Sedimentary<br>Research, 2022, 92, 635-657.                                 | 0.8 | 2         |
| 64 | The "Lower Kaimur Porcellanite―(Vindhyan Supergroup) is of Sedimentary Origin and not Tuff.<br>Journal of the Geological Society of India, 2020, 95, 17-24.                                                                                                     | 0.5 | 0         |
| 65 | Reply to the Discussion by Alâ€Mufti on "On the origin and significance of composite particles in<br>mudstones: Examples from the Cenomanian Dunvegan Formation―by Li <i>et al</i> . (2021),<br>Sedimentology, 68, 737–754. Sedimentology, 0, , .               | 1.6 | 0         |