
Ricardo Carelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7510455/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined adaptive neural network and regressorâ€based trajectory tracking control of flexible joint robots. IET Control Theory and Applications, 2022, 16, 31-50.	1.2	3
2	Motion control for a differential vehicle with variable point of interest. Application: Smart cane control. Robotics and Autonomous Systems, 2022, 154, 104146.	3.0	1
3	Trunk detection in tree crops using RGB-D images for structure-based ICM-SLAM. Computers and Electronics in Agriculture, 2022, 199, 107099.	3.7	3
4	Adaptive RBF neural network-based control of an underactuated control moment gyroscope. Neural Computing and Applications, 2021, 33, 6805-6818.	3.2	9
5	Cooperative Load Transportation With Two Quadrotors Using Adaptive Control. IEEE Access, 2021, 9, 129148-129160.	2.6	28
6	A Path-Following Controller for Guiding a Single Robot or a Multi-robot System. Journal of Control, Automation and Electrical Systems, 2021, 32, 895-909.	1.2	6
7	Low-cost Position and Force Measurement System for Payload Transport Using UAVs. International Journal of Automation and Computing, 2021, 18, 594-604.	4.5	1
8	Adaptive tracking control for a UAV with neural adaptive compensation using SMC. , 2021, , .		1
9	Expectations and Perceptions of Healthcare Professionals for Robot Deployment in Hospital Environments During the COVID-19 Pandemic. Frontiers in Robotics and Al, 2021, 8, 612746.	2.0	36
10	Unified control solution for mobile robot formations. , 2021, , .		0
11	Adaptive 3D Visual Servoing of a Scara Robot Manipulator with Unknown Dynamic and Vision System Parameters. Automation, 2021, 2, 127-140.	1.2	4
12	Adaptive trajectory tracking control for quadrotors with disturbances by using generalized regression neural networks. Neurocomputing, 2021, 460, 243-255.	3.5	14
13	Aerial Load Transportation with Multiple Quadrotors Based on a Kinematic Controller and a Neural SMC Dynamic Compensation. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 100, 519-530.	2.0	26
14	Unified Passivity-Based Visual Control for Moving Object Tracking. , 2020, , 347-387.		0
15	Visual Servo Controllers for an UAV Tracking Vegetal Paths. , 2020, , 597-625.		1
16	Optimal Trajectory Tracking Control for a UAV Based on Linearized Dynamic Error. Lecture Notes in Computer Science, 2020, , 83-96.	1.0	2
17	Admittance Controller with Spatial Modulation for Assisted Locomotion using a Smart Walker. Journal of Intelligent and Robotic Systems: Theory and Applications, 2019, 94, 621-637.	2.0	36
18	Continuous Probabilistic SLAM Solved via Iterated Conditional Modes. International Journal of Automation and Computing, 2019, 16, 838-850.	4.5	4

#	Article	IF	CITATIONS
19	UAVs Formation Control With Dynamic Compensation Using Neuro Adaptive SMC. , 2019, , .		10
20	An Adaptive Dynamic Controller for Quadrotor to Perform Trajectory Tracking Tasks. Journal of Intelligent and Robotic Systems: Theory and Applications, 2019, 93, 5-16.	2.0	47
21	Iterated Conditional Modes to Solve Simultaneous Localization and Mapping in Markov Random Fields Context. International Journal of Automation and Computing, 2018, 15, 310-324.	4.5	10
22	Modeling and Path-Following Control of a Wheelchair in Human-Shared Environments. International Journal of Humanoid Robotics, 2018, 15, 1850010.	0.6	10
23	Adaptive Visual Servoing Control of a Manipulator with Uncertainties in Vision and Dynamics. , 2018, ,		3
24	Neural control of a Quadrotor: A state-observer based approach. , 2018, , .		3
25	A Controller Based on PVTOL Control Signals for Guiding a Quadrotor in 3D Navigation Tasks. , 2018, ,		1
26	Control of a robotic knee exoskeleton for assistance and rehabilitation based on motion intention from sEMG. Research on Biomedical Engineering, 2018, 34, 198-210.	1.5	29
27	Multi-objective control for cooperative payload transport with rotorcraft UAVs. ISA Transactions, 2018, 80, 491-502.	3.1	41
28	Bounded memory probabilistic mapping of out-of-structure objects in fruit crops environments. Computers and Electronics in Agriculture, 2018, 151, 11-20.	3.7	5
29	A Velocity-Based Dynamic Model and Its Properties for Differential Drive Mobile Robots. Journal of Intelligent and Robotic Systems: Theory and Applications, 2017, 85, 277-292.	2.0	55
30	Indoor low-cost localization system for controlling aerial robots. Control Engineering Practice, 2017, 61, 93-111.	3.2	20
31	Adaptive dynamic control for trajectory tracking with a quadrotor. , 2017, , .		1
32	Adaptive dynamic control of a quadrotor for trajectory tracking. , 2017, , .		6
33	Control of bidirectional physical human–robot interaction based on the human intention. Intelligent Service Robotics, 2017, 10, 31-40.	1.6	11
34	Human interaction dynamics for its use in mobile robotics: Impedance control for leader-follower formation. IEEE/CAA Journal of Automatica Sinica, 2017, 4, 696-703.	8.5	12
35	A Novel Null-Space-Based UAV Trajectory Tracking Controller With Collision Avoidance. IEEE/ASME Transactions on Mechatronics, 2017, 22, 2543-2553.	3.7	70
36	Dynamic obstacle avoidance based on time-variation of a potential field for robots formation. , 2017, , .		7

#	Article	IF	CITATIONS
37	Probabilistic mapping in agricultural environments using kernel estimators with recursive subsampling. , 2017, , .		Ο
38	Passivity based visual servoing of a UAV for tracking crop lines. , 2017, , .		4
39	A New Controller for a Smart Walker Based on Human-Robot Formation. Sensors, 2016, 16, 1116.	2.1	23
40	Analysis of the use of a robot to improve social skills in children with autism spectrum disorder. Research on Biomedical Engineering, 2016, 32, 161-175.	1.5	35
41	Trajectory tracking for UAV with saturation of velocities. , 2016, , .		4
42	Dynamic Modeling and Identification of an Agriculture Autonomous Vehicle. IEEE Latin America Transactions, 2016, 14, 2631-2637.	1.2	12
43	Human-Robot Interaction: Legible behavior rules in passing and crossing events. IEEE Latin America Transactions, 2016, 14, 2644-2650.	1.2	4
44	Behavioral dynamics of the human locomotion for improving the social acceptance of mobile robots. , 2016, , .		0
45	3D Formation Control of Autonomous Vehicles Based on Null-Space. Journal of Intelligent and Robotic Systems: Theory and Applications, 2016, 84, 453-467.	2.0	28
46	Multimodal Human–Robot Interaction for Walker-Assisted Gait. IEEE Systems Journal, 2016, 10, 933-943.	2.9	47
47	Indoor waypoint UAV navigation using a RGB-D system. , 2015, , .		4
48	Trajectory tracking of a mini four-rotor helicopter in dynamic environments - a linear algebra approach. Robotica, 2015, 33, 1628-1652.	1.3	23
49	Leader-follower coordinated control based on socially acceptable dynamics. , 2015, , .		1
50	Design of a robotic cane to assist people with disabilities. , 2015, , .		2
51	Port-Hamiltonian modelling of a car-like robot. , 2015, , .		2
52	Port-hamiltonian modelling of a differential drive mobile robot with reference velocities as inputs. , 2015, , .		2
53	Robotics as a Tool for Physiotherapy and Rehabilitation Sessions**Authors acknowledge the financial support from FAPES, CAPES and CNPq IFAC-PapersOnLine, 2015, 48, 148-153.	O.5	7
54	Control of a heterogeneous aerial-terrestrial formation using null space approach. , 2015, , .		2

 $Control \ of \ a \ heterogeneous \ aerial-terrestrial \ formation \ using \ null \ space \ approach. \ , \ 2015, \ , \ .$ 54

#	Article	IF	CITATIONS
55	The Eighth Argentine Robotics Workshop [Regional]. IEEE Robotics and Automation Magazine, 2015, 22, 12-119. Passivity-based visual feedback control with dynamic compensation of mobile manipulators: Stability	2.2	Ο
56	and <mml:math <br="" altimg="si5.gif" display="inline" overflow="scroll">xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:math>	3.0	13
57	xmlns:tb="http://www.elsevier.com/xml/ّcommon/table/dtd" xmlns:. Robotics and Autonomous Systems, Human-robot interaction in precision agriculture: Sharing the workspace with service units. , 2015, , .		19
58	The Multilayer Control Scheme: A Strategy to Guide \$\$n\$\$ n -Robots Formations with Obstacle Avoidance. Journal of Control, Automation and Electrical Systems, 2015, 26, 201-214.	1.2	17
59	Smart Walkers: Advanced Robotic Human Walking-Aid Systems. Springer Tracts in Advanced Robotics, 2015, , 103-131.	0.3	13
60	Optimization methodology to fruit grove mapping in precision agriculture. Computers and Electronics in Agriculture, 2015, 116, 88-100.	3.7	16
61	Switched Control to Robot-Human Bilateral Interaction for Guiding People. Journal of Intelligent and Robotic Systems: Theory and Applications, 2015, 77, 73-93.	2.0	15
62	A Computational System for Trajectory Tracking and 3D Positioning of Multiple UAVs. , 2014, , .		7
63	Coordinated path-following for multi-robot systems using the cluster space framework approach. , 2014, , .		3
64	Adaptive cooperative control of multi-mobile manipulators. , 2014, , .		11
65	Towards a Smart Walker controller for physiotherapy and rehabilitation purposes. , 2014, , .		2
66	A Multi-Layer Control Scheme for a centralized UAV formation. , 2014, , .		30
67	Formation control of unmanned aerial vehicles based on the null-space. , 2014, , .		5
68	Low Level Model Identification of a Quadrotor X3D-BL. , 2014, , .		1
69	Sliding Mode Neuro Adaptive Control in Trajectory Tracking for Mobile Robots. Journal of Intelligent and Robotic Systems: Theory and Applications, 2014, 74, 931-944.	2.0	63
70	PVTOL maneuvers guided by a high-level nonlinear controller applied to a rotorcraft machine. European Journal of Control, 2014, 20, 172-179.	1.6	29
71	A trajectory tracking and 3D positioning controller for the AR.Drone quadrotor. , 2014, , .		62
72	Towards a New Modality-Independent Interface for a Robotic Wheelchair. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 567-584.	2.7	70

#	Article	IF	CITATIONS
73	Human–robot interaction based on wearable IMU sensor and laser range finder. Robotics and Autonomous Systems, 2014, 62, 1425-1439.	3.0	57
74	Using a 3DOF Parallel Robot and a Spherical Bat to Hit a Ping-Pong Ball. International Journal of Advanced Robotic Systems, 2014, 11, 76.	1.3	5
75	Robust Control with Dynamic Compensation for Human-Wheelchair System. Lecture Notes in Computer Science, 2014, , 376-389.	1.0	14
76	A nonlinear trajectory tracking controller for mobile robots with velocity limitation via fuzzy gains. Control Engineering Practice, 2013, 21, 1302-1309.	3.2	33
77	Autonomous Simultaneous Localization and Mapping driven by Monte Carlo uncertainty maps-based navigation. Knowledge Engineering Review, 2013, 28, 35-57.	2.1	6
78	Estimation and control of the 3D position of a quadrotor in indoor environments. , 2013, , .		9
79	Adaptive neural sliding mode compensator for a class of nonlinear systems with unmodeled uncertainties. Engineering Applications of Artificial Intelligence, 2013, 26, 2251-2259.	4.3	16
80	High-level underactuated nonlinear control for rotorcraft machines. , 2013, , .		33
81	A new positioning and path following controller for unicycle mobile robots. , 2013, , .		7
82	Switched control algorithms to robot-human bilateral interaction without contact. , 2013, , .		1
83	Leader-following control of a UAV-UGV formation. , 2013, , .		9
84	A Robust Adaptive Path-Following Controller for a Robotic Wheelchair. Journal of Control, Automation and Electrical Systems, 2013, 24, 397-408.	1.2	5
85	Agricultural Robotics: Unmanned Robotic Service Units in Agricultural Tasks. IEEE Industrial Electronics Magazine, 2013, 7, 48-58.	2.3	160
86	Bilateral human-robot interaction with physical contact. , 2013, , .		3
87	An Inexpensive Method for Kinematic Calibration of a Parallel Robot by Using One Hand-Held Camera as Main Sensor. Sensors, 2013, 13, 9941-9965.	2.1	25
88	3-D positioning tasks for RUAS using switched PVTOL controllers. , 2013, , .		3
89	An Analytical Approach to Avoid Obstacles in Mobile Robot Navigation. International Journal of Advanced Robotic Systems, 2013, 10, 278.	1.3	13
90	High-Level Flight Controllers Applied to Helicopter Navigation: A Comparative Study. , 2012, , .		3

#	Article	IF	CITATIONS
91	Adaptive unified motion control of mobile manipulators. Control Engineering Practice, 2012, 20, 1337-1352.	3.2	61
92	Neural network-based compensation control of mobile robots with partially known structure. IET Control Theory and Applications, 2012, 6, 1851-1860.	1.2	24
93	Multilayer scheme for the adaptive cooperative coordinated control of mobile manipulators. , 2012, , .		4
94	Embedding obstacle avoidance to trajectory tracking for unicycle mobile robots. , 2012, , .		2
95	High-Level Nonlinear Underactuated Controller for a Leader-Follower Formation Involving a Miniature Helicopter and a Ground Robot. , 2012, , .		4
96	Autonomous Navigation with Obstacle Avoidance for a Car-Like Robot. , 2012, , .		2
97	Adaptive Coordinated Cooperative Control of Multi-Mobile Manipulators. , 2012, , .		1
98	Passivity based visual servoing of mobile robots with dynamics compensation. Mechatronics, 2012, 22, 481-490.	2.0	10
99	Visual control with adaptive dynamical compensation for 3D target tracking by mobile manipulators. Mechatronics, 2012, 22, 491-502.	2.0	25
100	Switching control signal for bilateral tele-operation of a mobile manipulator. , 2011, , .		10
101	A method for kinematic calibration of a parallel robot by using one camera in hand and a spherical object. , 2011, , .		7
102	Adaptive Neural Dynamic Compensator for Mobile Robots in Trajectory tracking control. IEEE Latin America Transactions, 2011, 9, 593-602.	1.2	14
103	3-D path-following with a miniature helicopter using a high-level nonlinear underactuated controller. , 2011, , .		10
104	Coordinated cooperative control of mobile manipulators. , 2011, , .		11
105	Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection. Computers and Electronics in Agriculture, 2011, 78, 195-207.	3.7	95
106	Hovering control of a miniature helicopter attached to a platform. , 2011, , .		1
107	Adaptive motion control law of a robotic wheelchair. Control Engineering Practice, 2011, 19, 113-125.	3.2	34
108	Autonomous mobile robots navigation using RBF neural compensator. Control Engineering Practice, 2011, 19, 215-222.	3.2	41

#	ARTICLE	IF	CITATIONS
109	Switching control approach for stable navigation of mobile robots in unknown environments. Robotics and Computer-Integrated Manufacturing, 2011, 27, 558-568.	6.1	31
110	Adaptive Dynamic Path Following Control of an Unicycle-Like Mobile Robot. Lecture Notes in Computer Science, 2011, , 563-574.	1.0	18
111	Visual servoing for the Robotenis system: A strategy for a 3 DOF parallel robot to hit a Ping-Pong ball. , 2011, , .		2
112	Towards features updating selection based on the covariance matrix of the SLAM system state. Robotica, 2011, 29, 271-282.	1.3	10
113	Ultra Wide-Band Localization and SLAM: A Comparative Study for Mobile Robot Navigation. Sensors, 2011, 11, 2035-2055.	2.1	24
114	Analysis of Different Feature Selection Criteria Based on a Covariance Convergence Perspective for a SLAM Algorithm. Sensors, 2011, 11, 62-89.	2.1	15
115	Navegación Autónoma Asistida Basada en SLAM para una Silla de Ruedas Robotizada en Entornos Restringidos. RIAI - Revista Iberoamericana De Automatica E Informatica Industrial, 2011, 8, 81-92.	0.6	5
116	SLAM algorithm applied to robotics assistance for navigation in unknown environments. Journal of NeuroEngineering and Rehabilitation, 2010, 7, 10.	2.4	18
117	Monte Carlo uncertainty maps-based for mobile robot autonomous SLAM navigation. , 2010, , .		6
118	SLAM-based robotic wheelchair navigation system designed for confined spaces. , 2010, , .		41
119	Adaptive control with redundancy resolution of mobile manipulators. , 2010, , .		1
120	SLAM-based turning strategy in restricted environments for car-like mobile robots. , 2010, , .		5
121	A nonlinear underactuated controller for 3D-trajectory tracking with a miniature helicopter. , 2010, , \cdot		8
122	Robust control with redundancy resolution and dynamic compensation for mobile manipulators. , 2010, , .		17
123	Decentralized Control of a Formation Involving a Miniature Helicopter and a Team of Ground Robots Based on Artificial Vision. , 2010, , .		9
124	One camera in hand for kinematic calibration of a parallel robot. , 2010, , .		7
125	Autonomous assistance navigation for robotic wheelchairs in confined spaces. , 2010, 2010, 503-6.		4
126	Feature Selection Criteria for Real Time EKF-SLAM Algorithm. International Journal of Advanced Robotic Systems, 2009, 6, 21.	1.3	9

#	Article	IF	CITATIONS
127	SLAM-based Cross-a-Door Solution Approach for a Robotic Wheelchair. International Journal of Advanced Robotic Systems, 2009, 6, 20.	1.3	12
128	Solution to a door crossing problem for an autonomous wheelchair. , 2009, , .		13
129	Stable contour-following control of wheeled mobile robots. Robotica, 2009, 27, 1-12.	1.3	42
130	Decentralized control of leader-follower formations of mobile robots with obstacle avoidance. , 2009, , .		18
131	A multi-layer control scheme for multi-robot formations with adaptive dynamic compensation. , 2009, , .		15
132	Evolving hardware using a new evolutionary algorithm based on evolution of a species. International Journal of Bio-Inspired Computation, 2009, 1, 164.	0.6	6
133	Hybrid Collaborative Stereo Vision System for Mobile Robots Formation. International Journal of Advanced Robotic Systems, 2009, 6, 41.	1.3	3
134	Autonomous and teleoperation control of a mobile robot. Mechatronics, 2008, 18, 187-194.	2.0	16
135	Human-machine interfaces based on EMG and EEG applied to robotic systems. Journal of NeuroEngineering and Rehabilitation, 2008, 5, 10.	2.4	121
136	An adaptive dynamic controller for autonomous mobile robot trajectory tracking. Control Engineering Practice, 2008, 16, 1354-1363.	3.2	241
137	Dynamic model and control structure for an autonomous wheelchair. , 2008, , .		2
138	Visual Servo Control of a Mobile Robot in Agriculture Environments#. Mechanics Based Design of Structures and Machines, 2008, 36, 392-410.	3.4	6
139	Switching adaptive control of mobile robots. , 2008, , .		10
140	Dynamic model based formation control and obstacle avoidance of multi-robot systems. Robotica, 2008, 26, 345-356.	1.3	85
141	Towards a Probabilistic Manipulator Robot's Workspace Governed by a BCI. Communications in Computer and Information Science, 2008, , 73-84.	0.4	2
142	Homography-Based Tracking Control for Mobile Robots. Lecture Notes in Computer Science, 2008, , 718-728.	1.0	0
143	Switching Control of Mobile Robots for Autonomous Navigation in Unknown Environments. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	24

144 Homography-Based Tracking Control for Mobile Robot., 2007,,.

6

#	ARTICLE	IF	CITATIONS
145	Nonlinear Control Techniques and Omnidirectional Vision for Team Formation on Cooperative Robotics. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	16
146	Maps managing interface design for a mobile robot navigation governed by a BCI. Journal of Physics: Conference Series, 2007, 90, 012088.	0.3	8
147	Probabilistic scan mode of a robot manipulator workspace using EEG signals. Part I. Journal of Physics: Conference Series, 2007, 90, 012095.	0.3	1
148	Probabilistic scan mode of a robot manipulator workspace using EEG signals. Part II. Journal of Physics: Conference Series, 2007, 90, 012096.	0.3	0
149	Visual servoing using a parallel robot: Preliminary results. , 2007, , .		1
150	Visual Servoing of a Parallel Robot System. , 2007, , .		8
151	Visual servoing of a parallel robot system. , 2007, , .		2
152	Parallel Robot High Speed Object Tracking. Lecture Notes in Computer Science, 2007, , 295-306.	1.0	8
153	Vision-Based Control of the RoboTenis System. , 2007, , 229-240.		12
154	Hybrid Formation Control for Non-Holonomic Wheeled Mobile Robots. , 2007, , 21-34.		6
155	Teleoperation of an Industrial Manipulator Through a TCP/IP Channel Using EEG Signals. , 2006, , .		14
156	Avoiding Obstacles in Mobile Robot Navigation: Implementing the Tangential Escape Approach. , 2006, , .		4
157	WALL-FOLLOWING STABLE CONTROL FOR WHEELED MOBILE ROBOTS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 85-90.	0.4	4
158	A Nonlinear Control Applied to Team Formation Based on Omnidirectional Vision. , 2006, , .		2
159	Direct visual tracking control of remote cellular robots. Robotics and Autonomous Systems, 2006, 54, 805-814.	3.0	31
160	Control based on perspective lines of a non-holonomic mobile robot with camera-on-board. International Journal of Control, 2006, 79, 362-371.	1.2	10
161	Dynamic Modeling and Centralized Formation Control of Mobile Robots. Industrial Electronics Society (IECON), Annual Conference of IEEE, 2006, , .	0.0	63

162 Using Panoramic Images and Optical Flow to Avoid Obstacles in Mobile Robot Navigation., 2006,,.

#	Article	IF	CITATIONS
163	New Evolutionary Algorithm based on the Mathematical Modeling of the Evolution of a Species. IEEE Latin America Transactions, 2005, 3, 8-14.	1.2	3
164	Combined force and visual control of an industrial robot. Robotica, 2004, 22, 163-171.	1.3	13
165	A New Mobile Robot Control Approach via Fusion of Control Signals. IEEE Transactions on Systems, Man, and Cybernetics, 2004, 34, 419-429.	5.5	37
166	Corridor navigation and wall-following stable control for sonar-based mobile robots. Robotics and Autonomous Systems, 2003, 45, 235-247.	3.0	105
167	Supervisory control for a telerobotic system: a hybrid control approach. Control Engineering Practice, 2003, 11, 805-817.	3.2	25
168	Adaptive servo visual robot control. Robotics and Autonomous Systems, 2003, 43, 51-78.	3.0	45
169	A NEW MOBILE ROBOT CONTROL ARCHITECTURE VIA CONTROL OUTPUT FUSION. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2002, 35, 395-400.	0.4	2
170	VISUAL SERVO CONTROL OF INDUSTRIAL ROBOT MANIPULATOR. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2002, 35, 485-490.	0.4	1
171	Neural networks for advanced control of robot manipulators. IEEE Transactions on Neural Networks, 2002, 13, 343-354.	4.8	113
172	pH Neutralization Process as a Benchmark for Testing Nonlinear Controllers. Industrial & Engineering Chemistry Research, 2001, 40, 2467-2473.	1.8	18
173	Mobile robot navigation based on the fusion of control signals from different controllers. , 2001, , .		7
174	Tracking adaptive impedance robot control with visual feedback. Robotica, 2000, 18, 369-374.	1.3	2
175	Stable visual servoing of camera-in-hand robotic systems. IEEE/ASME Transactions on Mechatronics, 2000, 5, 39-48.	3.7	203
176	A temporised Petri net approach for design, modelling and analysis of flexible production systems. International Journal of Advanced Manufacturing Technology, 1997, 13, 214-226.	1.5	16
177	Tracking Adapitive Control of Robots with Visual Feedback. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1996, 29, 265-270.	0.4	3
178	A class of nonlinear PD-type controllers for robot manipulators. Journal of Field Robotics, 1996, 13, 793-802.	0.7	68
179	Parallel computation of a control algorithm for a robot manipulator. Control Engineering Practice, 1996, 4, 179-186.	3.2	0
180	A Neural Networks-Based Feedback Robust Adaptive Controller for Robots. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1995, 28, 205-210.	0.4	0

#	Article	IF	CITATIONS
181	A neural network based feedforward adaptive controller for robots. IEEE Transactions on Systems, Man, and Cybernetics, 1995, 25, 1281-1288.	0.9	73
182	Adaptive motion-force control of robots with uncertain constraints. Robotics and Computer-Integrated Manufacturing, 1993, 10, 393-399.	6.1	2
183	An adaptive impedance/force controller for robot manipulators. IEEE Transactions on Automatic Control, 1991, 36, 967-971.	3.6	107
184	An adaptive impedance controller for robot manipulators. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1991, 24, 87-92.	0.4	4
185	Adaptive force control of robot manipulators. International Journal of Control, 1990, 52, 37-54.	1.2	36
186	Adaptive motion control design of robot manipulators: an input-output approach. International Journal of Control, 1989, 50, 2563-2581.	1.2	59
187	On the use of optical flow in mobile robot navigation: the search for a suitable algorithm. , 0, , .		1
188	Unified approach to adaptive control of robotic manipulators. , 0, , .		30
189	On adaptive impedance control of robot manipulators. , 0, , .		81
190	Adaptive robot control with visual feedback. , 0, , .		20
191	A stable visual servo controller for camera-in-hand robotic systems. , 0, , .		4
192	Tracking adaptive impedance robot control with visual feedback. , 0, , .		5
193	Stability analysis for a teleoperation system with time delay and force feedback. , 0, , .		9
194	Stable AGV corridor navigation with fused vision-based control signals. , 0, , .		29
195	Vision-based tracking control for mobile robots. , 0, , .		13
196	Optical Flow Calculation Using Data Fusion with Decentralized Information Filter. , 0, , .		6
197	Stable switching contour-following controller for wheeled mobile robots. , 0, , .		4
198	New Visual Servoing Control Strategies in Tracking Tasks Using a PKM. , 0, , .		8

New Visual Servoing Control Strategies in Tracking Tasks Using a PKM. , 0, , . 198