Matthew J Gidden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7509830/publications.pdf

Version: 2024-02-01

33 papers 3,421 citations

346980 22 h-index 30 g-index

51 all docs

51 docs citations

51 times ranked 5028 citing authors

#	Article	IF	Citations
1	The contribution of bioenergy to the decarbonization of transport: a multi-model assessment. Climatic Change, 2022, 170, 1.	1.7	4
2	Transparency crucial to Paris climate scenarios—Response. Science, 2022, 375, 828-828.	6.0	0
3	An emission pathway classification reflecting the Paris Agreement climate objectives. Communications Earth & Environment, 2022, 3, .	2.6	32
4	Tracing international migration in projections of income and inequality across the Shared Socioeconomic Pathways. Climatic Change, 2021, 166, 1.	1.7	8
5	Wave of net zero emission targets opens window to meeting the Paris Agreement. Nature Climate Change, 2021, 11, 820-822.	8.1	129
6	Access to clean cooking services in energy and emission scenarios after COVID-19. Nature Energy, 2021, 6, 1067-1076.	19.8	31
7	Can updated climate pledges limit warming well below 2°C?. Science, 2021, 374, 693-695.	6.0	80
8	Clean cooking access may stall under slow post-pandemic recovery and ambitious climate mitigation without explicit focus. Nature Energy, 2021, 6, 1009-1010.	19.8	4
9	Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison. Climatic Change, 2020, 163, 1553-1568.	1.7	112
10	COVID-19 recovery funds dwarf clean energy investment needs. Science, 2020, 370, 298-300.	6.0	101
11	Current and future global climate impacts resulting from COVID-19. Nature Climate Change, 2020, 10, 913-919.	8.1	400
12	Fair-share carbon dioxide removal increases major emitter responsibility. Nature Climate Change, 2020, 10, 836-841.	8.1	68
13	EMF-33 insights on bioenergy with carbon capture and storage (BECCS). Climatic Change, 2020, 163, 1621-1637.	1.7	30
14	Decarbonization of Australia's Energy System: Integrated Modeling of the Transformation of Electricity, Transportation, and Industrial Sectors. Energies, 2020, 13, 3805.	1.6	27
15	Bioenergy technologies in long-run climate change mitigation: results from the EMF-33 study. Climatic Change, 2020, 163, 1603-1620.	1.7	31
16	The generation of gridded emissions data for CMIP6. Geoscientific Model Development, 2020, 13, 461-482.	1.3	88
17	Decarbonization pathways and energy investment needs for developing Asia in line with â€well below' 2°C. Climate Policy, 2020, 20, 234-245.	2.6	18
18	The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 2020, 13, 3571-3605.	1.3	539

#	Article	IF	CITATIONS
19	Income inequality projections for the Shared Socioeconomic Pathways (SSPs). Futures, 2019, 105, 27-39.	1.4	59
20	A new scenario logic for the Paris Agreement long-term temperature goal. Nature, 2019, 573, 357-363.	13.7	307
21	First forcing estimates from the future CMIP6 scenarios of anthropogenic aerosol optical properties and an associated Twomey effect. Geoscientific Model Development, 2019, 12, 989-1007.	1.3	27
22	Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geoscientific Model Development, 2019, 12, 1443-1475.	1.3	496
23	A comparison of low carbon investment needs between China and Europe in stringent climate policy scenarios. Environmental Research Letters, 2019, 14, 054017.	2.2	18
24	Balancing clean water-climate change mitigation trade-offs. Environmental Research Letters, 2019, 14, 014009.	2.2	48
25	The MESSAGE Integrated Assessment Model and the ix modeling platform (ixmp): An open framework for integrated and cross-cutting analysis of energy, climate, the environment, and sustainable development. Environmental Modelling and Software, 2019, 112, 143-156.	1.9	114
26	pyam: a Python Package for the Analysis and Visualization of Models of the Interaction of Climate, Human, and Environmental Systems. Journal of Open Source Software, 2019, 4, 1095.	2.0	10
27	Opening the black box of energy modelling: Strategies and lessons learned. Energy Strategy Reviews, 2018, 19, 63-71.	3.3	168
28	A methodology and implementation of automated emissions harmonization for use in Integrated Assessment Models. Environmental Modelling and Software, 2018, 105, 187-200.	1.9	32
29	Quantifying the potential for reservoirs to secure future surface water yields in the world's largest river basins. Environmental Research Letters, 2018, 13, 044026.	2.2	20
30	Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals. Nature Energy, 2018, 3, 589-599.	19.8	377
31	A methodology for determining the dynamic exchange of resources in nuclear fuel cycle simulation. Nuclear Engineering and Design, 2016, 310, 378-394.	0.8	2
32	pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios. Open Research Europe, 0, 1, 74.	2.0	2
33	pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios. Open Research Europe, 0, 1, 74.	2.0	15