## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/750936/publications.pdf Version: 2024-02-01



YAN WANG

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Ternary cross-linked PVA-APTES-ZIF-90 membrane for enhanced ethanol dehydration performance.<br>Advanced Composites and Hybrid Materials, 2022, 5, 91-103.                                                                 | 9.9  | 17        |
| 2  | A review on the forward osmosis applications and fouling control strategies for wastewater treatment. Frontiers of Chemical Science and Engineering, 2022, 16, 661-680.                                                    | 2.3  | 17        |
| 3  | Coordination-crosslinked polyimide supported membrane for ultrafast molecular separation in multi-solvent systems. Chemical Engineering Journal, 2022, 427, 130941.                                                        | 6.6  | 28        |
| 4  | Facilely cyclization-modified PAN nanofiber substrate of thin film composite membrane for ultrafast polar solvent separation. Journal of Membrane Science, 2022, 641, 119911.                                              | 4.1  | 31        |
| 5  | An ultrapermeable thin film composite membrane supported by "green―nanofibrous polyimide<br>substrate for polar aprotic organic solvent recovery. Journal of Membrane Science, 2022, 644, 120192.                          | 4.1  | 11        |
| 6  | Polyamide-based membranes with structural homogeneity for ultrafast molecular sieving. Nature<br>Communications, 2022, 13, 500.                                                                                            | 5.8  | 84        |
| 7  | Ultrathin Membranes for Separations: A New Era Driven by Advanced Nanotechnology. Advanced<br>Materials, 2022, 34, e2108457.                                                                                               | 11.1 | 58        |
| 8  | Poly(ionic liquid)â€Armored MXene Membrane: Interlayer Engineering for Facilitated Water Transport.<br>Angewandte Chemie, 2022, 134, .                                                                                     | 1.6  | 4         |
| 9  | Poly(ionic liquid)â€Armored MXene Membrane: Interlayer Engineering for Facilitated Water Transport.<br>Angewandte Chemie - International Edition, 2022, 61, e202202515.                                                    | 7.2  | 27        |
| 10 | Metal-assisted multiple-crosslinked thin film composite hollow fiber membrane for highly efficient bioethanol purification. Chemical Engineering Journal, 2022, 448, 137773.                                               | 6.6  | 12        |
| 11 | Second interfacial polymerization of thinâ€film composite hollow fibers with<br><scp>amineâ€</scp> cyclodextrin <scp>s</scp> for pervaporation dehydration. AICHE Journal, 2021, 67,<br>e17144.                            | 1.8  | 16        |
| 12 | Breaking through permeability–selectivity tradeâ€off of thinâ€film composite membranes assisted with<br>crown ethers. AICHE Journal, 2021, 67, e17173.                                                                     | 1.8  | 17        |
| 13 | A transport channel-regulated MXene membrane <i>via</i> organic phosphonic acids for efficient water permeation. Chemical Communications, 2021, 57, 6245-6248.                                                             | 2.2  | 17        |
| 14 | Constructing superhydrophobic ZIF-8 layer with bud-like surface morphology on PDMS composite<br>membrane for highly efficient ethanol/water separation. Journal of Environmental Chemical<br>Engineering, 2021, 9, 104977. | 3.3  | 26        |
| 15 | Thin-Film Composite Polyamide Membranes with In Situ Attached Ag Nanoparticles for<br>Fouling-Mitigated Wastewater Treatment. ACS ES&T Water, 2021, 1, 1901-1910.                                                          | 2.3  | 12        |
| 16 | Highly porous nanofiber-supported monolayer graphene membranes for ultrafast organic solvent nanofiltration. Science Advances, 2021, 7, eabg6263.                                                                          | 4.7  | 75        |
| 17 | Monolayer graphene membranes for molecular separation in high-temperature harsh organic<br>solvents. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                         | 3.3  | 30        |
| 18 | Recent advances of thin film composite membranes for pervaporation applications: A comprehensive review. , 2021, 1, 100008.                                                                                                |      | 15        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Organophosphonate draw solution for produced water treatment with effectively mitigated membrane fouling via forward osmosis. Journal of Membrane Science, 2020, 593, 117429.                                                       | 4.1 | 46        |
| 20 | ZIF-8@GO composites incorporated polydimethylsiloxane membrane with prominent separation performance for ethanol recovery. Journal of Membrane Science, 2020, 598, 117681.                                                          | 4.1 | 79        |
| 21 | Facile Covalent Crosslinking of Zeolitic Imidazolate Framework/Polydimethylsiloxane Mixed Matrix<br>Membrane for Enhanced Ethanol/Water Separation Performance. ACS Sustainable Chemistry and<br>Engineering, 2020, 8, 12664-12676. | 3.2 | 48        |
| 22 | Improved performance of thin-film composite membrane supported by aligned nanofibers substrate with slit-shape pores for forward osmosis. Journal of Membrane Science, 2020, 612, 118447.                                           | 4.1 | 45        |
| 23 | Effect of ultrasonication parameters on forward osmosis performance of thin film composite polyamide membranes prepared with ultrasound-assisted interfacial polymerization. Journal of Membrane Science, 2020, 599, 117834.        | 4.1 | 26        |
| 24 | Constructing substrate of low structural parameter by salt induction for high-performance TFC-FO membranes. Journal of Membrane Science, 2020, 600, 117866.                                                                         | 4.1 | 24        |
| 25 | Forward osmosis-extraction hybrid process for resource recovery from dye wastewater. Journal of<br>Membrane Science, 2020, 612, 118376.                                                                                             | 4.1 | 25        |
| 26 | Confining migration of amine monomer during interfacial polymerization for constructing thin-film composite forward osmosis membrane with low fouling propensity. Chemical Engineering Science, 2019, 207, 54-68.                   | 1.9 | 38        |
| 27 | Efficient surface ionization and metallization of TFC membranes with superior separation performance, antifouling and anti-bacterial properties. Journal of Membrane Science, 2019, 586, 84-97.                                     | 4.1 | 51        |
| 28 | Special Issue on "Novel Membrane Technologies for Traditional Industrial Processes― Processes, 2019,<br>7, 144.                                                                                                                     | 1.3 | 1         |
| 29 | ZIFâ€8 membrane synthesized via covalentâ€assisted seeding on polyimide substrate for pervaporation<br>dehydration. AICHE Journal, 2019, 65, e16620.                                                                                | 1.8 | 28        |
| 30 | Zwitterion–Ag Complexes That Simultaneously Enhance Biofouling Resistance and Silver Binding<br>Capability of Thin Film Composite Membranes. ACS Applied Materials & Interfaces, 2019, 11,<br>15698-15708.                          | 4.0 | 64        |
| 31 | Versatile Surface Modification of TFC Membrane by Layer-by-Layer Assembly of Phytic Acid–Metal<br>Complexes for Comprehensively Enhanced FO Performance. Environmental Science & Technology,<br>2019, 53, 3331-3341.                | 4.6 | 64        |
| 32 | Application of polysaccharide derivatives as novel draw solutes in forward osmosis for desalination and protein concentration. Chemical Engineering Research and Design, 2019, 146, 211-220.                                        | 2.7 | 7         |
| 33 | Developing high-performance thin-film composite forward osmosis membranes by various tertiary amine catalysts for desalination. Advanced Composites and Hybrid Materials, 2019, 2, 51-69.                                           | 9.9 | 37        |
| 34 | Highly permeable and antifouling TFC FO membrane prepared with CD-EDA monomer for protein enrichment. Journal of Membrane Science, 2019, 572, 281-290.                                                                              | 4.1 | 35        |
| 35 | High-performance thin-film composite polyamide membranes developed with green<br>ultrasound-assisted interfacial polymerization. Journal of Membrane Science, 2019, 570-571, 112-119.                                               | 4.1 | 84        |
| 36 | Thin film composite membranes containing intrinsic CD cavities in the selective layer. Journal of<br>Membrane Science, 2018, 551, 294-304.                                                                                          | 4.1 | 64        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Antifouling enhancement of polyimide membrane by grafting DEDA-PS zwitterions. Chemosphere, 2018, 198, 30-39.                                                                                     | 4.2 | 38        |
| 38 | Efficient surface modification of thin-film composite membranes with self-catalyzed<br>tris(2-aminoethyl)amine for forward osmosis separation. Chemical Engineering Science, 2018, 178,<br>82-92. | 1.9 | 34        |
| 39 | A prospective study on thermally-cyclodehydrated poly(imide-oxadiazole) membranes for pervaporation dehydration. Journal of Membrane Science, 2018, 549, 184-191.                                 | 4.1 | 24        |
| 40 | Properties and pervaporation performance of poly(vinyl alcohol) membranes crosslinked with various dianhydrides. Journal of Applied Polymer Science, 2018, 135, 46159.                            | 1.3 | 26        |
| 41 | Antifouling polyimide membrane with grafted silver nanoparticles and zwitterion. Separation and<br>Purification Technology, 2018, 192, 230-239.                                                   | 3.9 | 67        |
| 42 | Evaluation of food additive sodium phytate as a novel draw solute for forward osmosis.<br>Desalination, 2018, 448, 87-92.                                                                         | 4.0 | 15        |
| 43 | Enhanced ethanol recovery of PDMS mixed matrix membranes with hydrophobically modified ZIF-90.<br>Separation and Purification Technology, 2018, 206, 80-89.                                       | 3.9 | 71        |
| 44 | Construction of SiO2@MWNTs incorporated PVDF substrate for reducing internal concentration polarization in forward osmosis. Journal of Membrane Science, 2018, 564, 328-341.                      | 4.1 | 92        |
| 45 | Exploration of oligomeric sodium carboxylates as novel draw solutes for forward osmosis. Chemical<br>Engineering Research and Design, 2018, 138, 77-86.                                           | 2.7 | 13        |
| 46 | High-performance thin-film composite membranes with surface functionalization by organic phosphonic acids. Journal of Membrane Science, 2018, 563, 284-297.                                       | 4.1 | 56        |
| 47 | Fabrication of Smart Hybrid Nanoreactors from Platinum Nanodendrites Encapsulating in<br>Hyperbranched Polyglycerol Hollow Shells. ACS Applied Nano Materials, 2018, 1, 2559-2566.                | 2.4 | 11        |
| 48 | Application of poly (4-styrenesulfonic acid-co-maleic acid) sodium salt as novel draw solute in forward osmosis for dye-containing wastewater treatment. Desalination, 2017, 421, 40-46.          | 4.0 | 46        |
| 49 | Performance enhancement of TFC FO membranes with polyethyleneimine modification and post-treatment. Journal of Membrane Science, 2017, 534, 46-58.                                                | 4.1 | 91        |
| 50 | Improved performance of thin-film composite membrane with PVDF/PFSA substrate for forward osmosis process. Journal of Membrane Science, 2017, 535, 188-199.                                       | 4.1 | 89        |
| 51 | Tris(2-aminoethyl)amine in-situ modified thin-film composite membranes for forward osmosis applications. Journal of Membrane Science, 2017, 537, 186-201.                                         | 4.1 | 71        |
| 52 | Electrospun nanofibrous membrane of porous fluorine-containing triptycene-based polyimides for oil/water separation. RSC Advances, 2017, 7, 22548-22552.                                          | 1.7 | 24        |
| 53 | Network cross-linking of polyimide membranes for pervaporation dehydration. Separation and Purification Technology, 2017, 185, 215-226.                                                           | 3.9 | 50        |
| 54 | Poly(vinyl alcohol)/ZIFâ€8â€NH <sub>2</sub> mixed matrix membranes for ethanol dehydration via pervaporation. AICHE Journal, 2016, 62, 1728-1739.                                                 | 1.8 | 100       |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Synthesis and Application of Organic Phosphonate Salts as Draw Solutes in Forward Osmosis for<br>Oil–Water Separation. Environmental Science & Technology, 2016, 50, 12022-12029.                                            | 4.6  | 53        |
| 56 | Novel thin film composite forward osmosis membrane of enhanced water flux and anti-fouling<br>property with N-[3-(trimethoxysilyl) propyl] ethylenediamine incorporated. Journal of Membrane<br>Science, 2016, 520, 400-414. | 4.1  | 65        |
| 57 | Novel carboxyethyl amine sodium salts as draw solutes with superior forward osmosis performance.<br>AICHE Journal, 2016, 62, 1226-1235.                                                                                      | 1.8  | 31        |
| 58 | Antifouling polyimide membrane with surface-bound silver particles. Journal of Membrane Science, 2016, 516, 83-93.                                                                                                           | 4.1  | 67        |
| 59 | Graphene oxide incorporated thin-film composite membranes for forward osmosis applications.<br>Chemical Engineering Science, 2016, 143, 194-205.                                                                             | 1.9  | 227       |
| 60 | Evaluation of Renewable Gluconate Salts as Draw Solutes in Forward Osmosis Process. ACS Sustainable Chemistry and Engineering, 2016, 4, 85-93.                                                                               | 3.2  | 54        |
| 61 | In-situ crosslinked PVA/organosilica hybrid membranes for pervaporation separations. Journal of<br>Membrane Science, 2016, 498, 263-275.                                                                                     | 4.1  | 112       |
| 62 | Sodium Tetraethylenepentamine Heptaacetate as Novel Draw Solute for Forward Osmosis—Synthesis,<br>Application and Recovery. Energies, 2015, 8, 12917-12928.                                                                  | 1.6  | 27        |
| 63 | Synthesis and application of ethylenediamine tetrapropionic salt as a novel draw solute for forward osmosis application. AICHE Journal, 2015, 61, 1309-1321.                                                                 | 1.8  | 40        |
| 64 | Novel thermally cross-linked polyimide membranes for ethanol dehydration via pervaporation.<br>Journal of Membrane Science, 2015, 496, 142-155.                                                                              | 4.1  | 67        |
| 65 | ZIF-90/P84 mixed matrix membranes for pervaporation dehydration of isopropanol. Journal of Membrane Science, 2014, 453, 155-167.                                                                                             | 4.1  | 142       |
| 66 | Thin-film composite membranes with modified polyvinylidene fluoride substrate for ethanol dehydration via pervaporation. Chemical Engineering Science, 2014, 118, 173-183.                                                   | 1.9  | 49        |
| 67 | Molecular design of thin film composite (TFC) hollow fiber membranes for isopropanol dehydration via pervaporation. Journal of Membrane Science, 2012, 405-406, 123-133.                                                     | 4.1  | 106       |
| 68 | Polyamide–imide membranes with surface immobilized cyclodextrin for butanol isomer separation via pervaporation. AICHE Journal, 2011, 57, 1470-1484.                                                                         | 1.8  | 49        |
| 69 | Pervaporation dehydration of ethylene glycol through polybenzimidazole (PBI)-based membranes. 1.<br>Membrane fabrication. Journal of Membrane Science, 2010, 363, 149-159.                                                   | 4.1  | 85        |
| 70 | Polyamide-imide/polyetherimide dual-layer hollow fiber membranes for pervaporation dehydration of C1–C4 alcohols. Journal of Membrane Science, 2009, 326, 222-233.                                                           | 4.1  | 169       |
| 71 | Polyimides membranes for pervaporation and biofuels separation. Progress in Polymer Science, 2009, 34, 1135-1160.                                                                                                            | 11.8 | 367       |