
Stefano Elli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7509294/publications.pdf Version: 2024-02-01

STEEANO FUL

#	Article	IF	CITATIONS
1	Pentosan Polysulfate Inhibits Attachment and Infection by SARS-CoV-2 In Vitro: Insights into Structural Requirements for Binding. Thrombosis and Haemostasis, 2022, 122, 984-997.	1.8	12
2	BMP6 binding to heparin and heparan sulfate is mediated by N-terminal and C-terminal clustered basic residues. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129799.	1.1	7
3	Enisamium Inhibits SARS-CoV-2 RNA Synthesis. Biomedicines, 2021, 9, 1254.	1.4	4
4	Evidence of a putative glycosaminoglycan binding site on the glycosylated SARS-CoV-2 spike protein N-terminal domain. Computational and Structural Biotechnology Journal, 2021, 19, 2806-2818.	1.9	33
5	MD simulation of the interaction between sialoglycans and the second sialic acid binding site of influenza A virus N1 neuraminidase. Biochemical Journal, 2021, 478, 423-441.	1.7	2
6	Mechanochemical synthesis of mechanical bonds in M12L8 poly-[n]-catenanes. Dalton Transactions, 2021, 51, 53-58.	1.6	7
7	Characterization of an Antibody Recognizing the Conserved Inner Core of <i>Pseudomonas aeruginosa</i> Lipopolysaccharides. Biochemistry, 2020, 59, 4202-4211.	1.2	4
8	Degeneracy of the Antithrombin Binding Sequence in Heparin: 2â€Oâ€Sulfated Iduronic Acid Can Replace the Critical Glucuronic Acid. Chemistry - A European Journal, 2020, 26, 11814-11818.	1.7	9
9	Heparin Inhibits Cellular Invasion by SARS-CoV-2: Structural Dependence of the Interaction of the Spike S1 Receptor-Binding Domain with Heparin. Thrombosis and Haemostasis, 2020, 120, 1700-1715.	1.8	228
10	Molecular Aspects of Heparanase Interaction with Heparan Sulfate, Heparin and Glycol Split Heparin. Advances in Experimental Medicine and Biology, 2020, 1221, 169-188.	0.8	2
11	In silico and in vitro analysis of genetic variants of the equine CYP3A94, CYP3A95 and CYP3A97 isoenzymes. Toxicology in Vitro, 2019, 60, 116-124.	1.1	5
12	Recognition and Conformational Properties of an Alternative Antithrombin Binding Sequence Obtained by Chemoenzymatic Synthesis. ChemBioChem, 2018, 19, 1178-1188.	1.3	11
13	Structural and conformational studies of the heparan sulfate mimetic PI-88. Glycobiology, 2018, 28, 731-740.	1.3	13
14	Investigating the relationship between temperature, conformation and calcium binding in heparin model oligosaccharides. Carbohydrate Research, 2017, 438, 58-64.	1.1	7
15	Investigating Glycol-Split-Heparin-Derived Inhibitors of Heparanase: A Study of Synthetic Trisaccharides. Molecules, 2016, 21, 1602.	1.7	15
16	Nuclear Magnetic Resonance and Molecular Dynamics Simulation of the Interaction between Recognition Protein H7 of the Novel Influenza Virus H7N9 and Glycan Cell Surface Receptors. Biochemistry, 2016, 55, 6605-6616.	1.2	12
17	Susceptibility of enoxaparin reducing end amino sugars to periodate oxidation. Carbohydrate Research, 2014, 400, 33-43.	1.1	9
18	Insights into the Human Glycan Receptor Conformation of 1918 Pandemic Hemagglutinin–Glycan Complexes Derived from Nuclear Magnetic Resonance and Molecular Dynamics Studies. Biochemistry, 2014, 53, 4122-4135.	1.2	14

Stefano Elli

#	Article	IF	CITATIONS
19	Conformational changes of 1-4-glucopyranosyl residues of a sulfated CC linked hexasaccharide. Carbohydrate Research, 2014, 389, 134-140.	1.1	2
20	Human (α2→6) and Avian (α2→3) Sialylated Receptors of Influenza A Virus Show Distinct Conformations and Dynamics in Solution. Biochemistry, 2013, 52, 7217-7230.	1.2	45
21	An unusual antithrombin-binding heparin octasaccharide with an additional 3-O-sulfated glucosamine in the active pentasaccharide sequence. Biochemical Journal, 2013, 449, 343-351.	1.7	49
22	Heparin Dodecasaccharide Containing Two Antithrombin-binding Pentasaccharides. Journal of Biological Chemistry, 2013, 288, 25895-25907.	1.6	40
23	Modeling the Adsorption Behavior of Linear End-Functionalized Poly(ethylene glycol) on an Ionic Substrate by a Coarse-Grained Monte Carlo Approach. Langmuir, 2010, 26, 15814-15823.	1.6	6
24	Effects on Molecular Conformation and Anticoagulant Activities of 1,6-Anhydrosugars at the Reducing Terminal of Antithrombin-Binding Octasaccharides Isolated from Low-Molecular-Weight Heparin Enoxaparin. Journal of Medicinal Chemistry, 2010, 53, 8030-8040.	2.9	44
25	Surface adsorption of comb polymers by Monte Carlo simulations. Polymer, 2008, 49, 1716-1724.	1.8	7
26	Heteroaromatic Chromophores: Structure, Electric Properties, Condensed Phase and Aggregation Effects: a Combined Experimental and Theoretical Study. AIP Conference Proceedings, 2007, , .	0.3	0
27	Computational Experiments on Filled Rubber Viscoelasticity:Â What Is the Role of Particleâ^'Particle Interactions?. Macromolecules, 2006, 39, 6744-6751.	2.2	104
28	Computer simulation of bulk mechanical properties and surface hydration of biomaterials. Journal of Biomedical Materials Research - Part A, 2006, 77A, 618-626.	2.1	28
29	"Intrinsic―and "Topological―Stiffness in Branched Polymers. Macromolecules, 2005, 38, 5288-5299.	2.2	58
30	Size and persistence length of molecular bottle-brushes by Monte Carlo simulations. Journal of Chemical Physics, 2004, 120, 6257-6267.	1.2	74
31	Positron and positronium chemistry by quantum Monte Carlo. V. The ground state potential energy curve of e+LiH. Journal of Chemical Physics, 2000, 113, 6154-6159.	1.2	44