Thomas Durek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7509285/publications.pdf

Version: 2024-02-01

196777 214428 2,881 78 29 citations h-index papers

50 g-index 85 85 85 3186 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enzymatic Câ€ŧo Protein Ligation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
2	Enzymatic Câ€to Protein Ligation. Angewandte Chemie, 2022, 134, .	1.6	1
3	Phage display-based discovery of cyclic peptides against the broad spectrum bacterial anti-virulence target CsrA. European Journal of Medicinal Chemistry, 2022, 231, 114148.	2.6	3
4	Cystine Knot Peptides with Tuneable Activity and Mechanism. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
5	Low potency inhibition of NaV1.7 by externally applied QX-314 via a depolarizing shift in the voltage-dependence of activation. European Journal of Pharmacology, 2022, , 175013.	1.7	O
6	Neurotoxic and cytotoxic peptides underlie the painful stings of the tree nettle Urtica ferox. Journal of Biological Chemistry, 2022, 298, 102218.	1.6	5
7	Improved Asparaginylâ€Ligaseâ€Catalyzed Transpeptidation via Selective Nucleophile Quenching. Angewandte Chemie - International Edition, 2021, 60, 4004-4008.	7.2	22
8	Improved Asparaginyl‣igase atalyzed Transpeptidation via Selective Nucleophile Quenching. Angewandte Chemie, 2021, 133, 4050-4054.	1.6	2
9	Yeast-based bioproduction of disulfide-rich peptides and their cyclization via asparaginyl endopeptidases. Nature Protocols, 2021, 16, 1740-1760.	5.5	21
10	Asparaginyl Ligases: New Enzymes for the Protein Engineer's Toolbox. ChemBioChem, 2021, 22, 2079-2086.	1.3	20
11	Effects of backbone cyclization on the pharmacokinetics and drug efficiency of the orally active analgesic conotoxin cVc1.1. Medicine in Drug Discovery, 2021, 10, 100087.	2.3	6
12	Melanocortin 1 Receptor Agonists Based on a Bivalent, Bicyclic Peptide Framework. Journal of Medicinal Chemistry, 2021, 64, 9906-9915.	2.9	6
13	Enzymatic C-Terminal Protein Engineering with Amines. Journal of the American Chemical Society, 2021, 143, 19498-19504.	6.6	22
14	Potent Thiophene Antagonists of Human Complement C3a Receptor with Anti-Inflammatory Activity. Journal of Medicinal Chemistry, 2020, 63, 529-541.	2.9	16
15	Two for the Price of One: Heterobivalent Ligand Design Targeting Two Binding Sites on Voltage-Gated Sodium Channels Slows Ligand Dissociation and Enhances Potency. Journal of Medicinal Chemistry, 2020, 63, 12773-12785.	2.9	15
16	Make it or break it: Plant AEPs on stage in biotechnology. Biotechnology Advances, 2020, 45, 107651.	6.0	19
17	Neurotoxic peptides from the venom of the giant Australian stinging tree. Science Advances, 2020, 6, .	4.7	16
18	Innentitelbild: Application and Structural Analysis of Triazoleâ€Bridged Disulfide Mimetics in Cyclic Peptides (Angew. Chem. 28/2020). Angewandte Chemie, 2020, 132, 11258-11258.	1.6	0

#	Article	IF	Citations
19	Characterization of Synthetic Tf2 as a NaV1.3 Selective Pharmacological Probe. Biomedicines, 2020, 8, 155.	1.4	8
20	A bifunctional asparaginyl endopeptidase efficiently catalyzes both cleavage and cyclization of cyclic trypsin inhibitors. Nature Communications, 2020, 11, 1575.	5.8	61
21	An environmentally sustainable biomimetic production of cyclic disulfide-rich peptides. Green Chemistry, 2020, 22, 5002-5016.	4.6	23
22	Application and Structural Analysis of Triazoleâ€Bridged Disulfide Mimetics in Cyclic Peptides. Angewandte Chemie - International Edition, 2020, 59, 11273-11277.	7.2	27
23	Application and Structural Analysis of Triazoleâ€Bridged Disulfide Mimetics in Cyclic Peptides. Angewandte Chemie, 2020, 132, 11369-11373.	1.6	7
24	A suite of kinetically superior AEP ligases can cyclise an intrinsically disordered protein. Scientific Reports, 2019, 9, 10820.	1.6	47
25	Site-Specific Sequential Protein Labeling Catalyzed by a Single Recombinant Ligase. Journal of the American Chemical Society, 2019, 141, 17388-17393.	6.6	65
26	Na _V 1.6 regulates excitability of mechanosensitive sensory neurons. Journal of Physiology, 2019, 597, 3751-3768.	1.3	31
27	Rapid and Scalable Plant-Based Production of a Potent Plasmin Inhibitor Peptide. Frontiers in Plant Science, 2019, 10, 602.	1.7	24
28	Papain-like cysteine proteases prepare plant cyclic peptide precursors for cyclization. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7831-7836.	3.3	44
29	A Centipede Toxin Family Defines an Ancient Class of CSαβ Defensins. Structure, 2019, 27, 315-326.e7.	1.6	17
30	Highly Potent and Selective Plasmin Inhibitors Based on the Sunflower Trypsin Inhibitor-1 Scaffold Attenuate Fibrinolysis in Plasma. Journal of Medicinal Chemistry, 2019, 62, 552-560.	2.9	27
31	The E15R Point Mutation in Scorpion Toxin Cn2 Uncouples Its Depressant and Excitatory Activities on Human Na _V 1.6. Journal of Medicinal Chemistry, 2018, 61, 1730-1736.	2.9	9
32	Co-expression of a cyclizing asparaginyl endopeptidase enables efficient production of cyclic peptides in planta. Journal of Experimental Botany, 2018, 69, 633-641.	2.4	53
33	Development of Novel Melanocortin Receptor Agonists Based on the Cyclic Peptide Framework of Sunflower Trypsin Inhibitor-1. Journal of Medicinal Chemistry, 2018, 61, 3674-3684.	2.9	29
34	NMR Structure of $\hat{1}\frac{1}{4}$ -Conotoxin GIIIC: Leucine 18 Induces Local Repacking of the N-Terminus Resulting in Reduced NaV Channel Potency. Molecules, 2018, 23, 2715.	1.7	5
35	Targeted Delivery of Cyclotides <i>via</i> Conjugation to a Nanobody. ACS Chemical Biology, 2018, 13, 2973-2980.	1.6	13
36	Molecular basis for the production of cyclic peptides by plant asparaginyl endopeptidases. Nature Communications, 2018, 9, 2411.	5.8	99

#	Article	IF	Citations
37	Synthesis and Protein Engineering Applications of Cyclotides. Australian Journal of Chemistry, 2017, 70, 152.	0.5	16
38	Mapping of voltage sensor positions in resting and inactivated mammalian sodium channels by LRET. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1857-E1865.	3.3	35
39	The tarantula toxin \hat{l}^2/\hat{l} -TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity. Scientific Reports, 2017, 7, 974.	1.6	16
40	Europium-Labeled Synthetic C3a Protein as a Novel Fluorescent Probe for Human Complement C3a Receptor. Bioconjugate Chemistry, 2017, 28, 1669-1676.	1.8	6
41	Combining Sense and Nonsense Codon Reassignment for Site-Selective Protein Modification with Unnatural Amino Acids. ACS Synthetic Biology, 2017, 6, 535-544.	1.9	39
42	Interaction of Synthetic Human SLURP-1 with the Nicotinic Acetylcholine Receptors. Scientific Reports, 2017, 7, 16606.	1.6	20
43	Analgesic Effects of GpTx-1, PF-04856264 and CNV1014802 in a Mouse Model of NaV1.7-Mediated Pain. Toxins, 2016, 8, 78.	1.5	94
44	Approaches to the stabilization of bioactive epitopes by grafting and peptide cyclization. Biopolymers, 2016, 106, 89-100.	1.2	56
45	Nicotiana alata Defensin Chimeras Reveal Differences in the Mechanism of Fungal and Tumor Cell Killing and an Enhanced Antifungal Variant. Antimicrobial Agents and Chemotherapy, 2016, 60, 6302-6312.	1.4	51
46	Isolation of two insecticidal toxins from venom of the Australian theraphosid spider Coremiocnemis tropix. Toxicon, 2016, 123, 62-70.	0.8	14
47	Constrained Cyclic Peptides as Immunomodulatory Inhibitors of the CD2:CD58 Protein–Protein Interaction. ACS Chemical Biology, 2016, 11, 2366-2374.	1.6	40
48	Modulation of human Na _v 1.7 channel gating by synthetic \hat{l}_{\pm} -scorpion toxin OD1 and its analogs. Channels, 2016, 10, 139-147.	1.5	16
49	Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase. Nature Communications, 2015, 6, 10199.	5.8	186
50	Therapeutic conotoxins: a US patent literature survey. Expert Opinion on Therapeutic Patents, 2015, 25, 1159-1173.	2.4	25
51	Cyclic alpha-conotoxin peptidomimetic chimeras as potent GLP-1R agonists. European Journal of Medicinal Chemistry, 2015, 103, 175-184.	2.6	20
52	Potent complement C3a receptor agonists derived from oxazole amino acids: Structure–activity relationships. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5604-5608.	1.0	7
53	Fmoc-Based Synthesis of Disulfide-Rich Cyclic Peptides. Journal of Organic Chemistry, 2014, 79, 5538-5544.	1.7	110
54	Chemical Synthesis, 3D Structure, and ASIC Binding Site of the Toxin Mambalginâ€2. Angewandte Chemie - International Edition, 2014, 53, 1017-1020.	7.2	66

#	Article	IF	CITATIONS
55	Isolation and Structural and Pharmacological Characterization of α-Elapitoxin-Dpp2d, an Amidated Three Finger Toxin from Black Mamba Venom. Biochemistry, 2014, 53, 3758-3766.	1.2	23
56	Disulfide-rich macrocyclic peptides as templates in drug design. European Journal of Medicinal Chemistry, 2014, 77, 248-257.	2.6	117
57	Isolation, synthesis and characterization of ω-TRTX-Cc1a, a novel tarantula venom peptide that selectively targets L-type CaV channels. Biochemical Pharmacology, 2014, 89, 276-286.	2.0	19
58	Efficient chemical synthesis of human complement protein C3a. Chemical Communications, 2013, 49, 2356.	2.2	14
59	Solid phase synthesis of peptide-selenoesters. Bioorganic and Medicinal Chemistry, 2013, 21, 3473-3478.	1.4	30
60	Chemical Engineering and Structural and Pharmacological Characterization of the \hat{l}_{\pm} -Scorpion Toxin OD1. ACS Chemical Biology, 2013, 8, 1215-1222.	1.6	50
61	Characterisation of Nav types endogenously expressed in human SH-SY5Y neuroblastoma cells. Biochemical Pharmacology, 2012, 83, 1562-1571.	2.0	64
62	Preformed Selenoesters Enable Rapid Native Chemical Ligation at Intractable Sites. Angewandte Chemie - International Edition, 2011, 50, 12042-12045.	7.2	103
63	Chemical Synthesis and Structure of the Prokineticin Bv8. ChemBioChem, 2010, 11, 1882-1888.	1.3	22
64	Chemical synthesis and folding of APETx2, a potent and selective inhibitor of acid sensing ion channel 3. Toxicon, 2009, 54, 56-61.	0.8	42
65	Convergent chemical synthesis and high-resolution x-ray structure of human lysozyme. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4846-4851.	3.3	153
66	Synthesis of Photoactive Analogues of a Cystine Knot Trypsin Inhibitor Protein. Organic Letters, 2007, 9, 5497-5500.	2.4	12
67	Structure of doubly prenylated Ypt1:GDI complex and the mechanism of GDI-mediated Rab recycling. EMBO Journal, 2006, 25, 13-23.	3.5	103
68	Total Chemical Synthesis, Folding, and Assay of a Small Protein on a Water-Compatible Solid Support. Angewandte Chemie - International Edition, 2006, 45, 3283-3287.	7.2	52
69	Protein semi-synthesis: New proteins for functional and structural studies. New Biotechnology, 2005, 22, 153-172.	2.7	63
70	Synthesis of Functionalized Rab GTPases by a Combination of Solution- or Solid-Phase Lipopeptide Synthesis with Expressed Protein Ligation. Chemistry - A European Journal, 2005, 11, 2756-2772.	1.7	32
71	Chemical Biology of Protein Lipidation: Semi-Synthesis and Structure Elucidation of Prenylated RabGTPases. ChemInform, 2005, 36, no.	0.1	0
72	Application of Protein Semisynthesis for the Construction of Functionalized Posttranslationally Modified Rab GTPases. Methods in Enzymology, 2005, 403, 29-42.	0.4	7

THOMAS DUREK

#	Article	IF	Citations
73	Chemical biology of protein lipidation: semi-synthesis and structure elucidation of prenylated RabGTPases. Organic and Biomolecular Chemistry, 2005, 3, 1157.	1.5	18
74	In Vitro Semisynthesis and Applications of C-Terminally Modified Rab Proteins. , 2004, 283, 233-244.		5
75	Synthesis of Fluorescently Labeled Mono- and Diprenylated Rab7 GTPase. Journal of the American Chemical Society, 2004, 126, 16368-16378.	6.6	63
76	Structure of Rab GDP-Dissociation Inhibitor in Complex with Prenylated YPT1 GTPase. Science, 2003, 302, 646-650.	6.0	193
77	Intein-Mediated Synthesis of Geranylgeranylated Rab7 Protein in Vitro. Journal of the American Chemical Society, 2002, 124, 5648-5649.	6.6	61
78	Cystine Knot Peptides with Tuneable Activity and Mechanism. Angewandte Chemie, 0, , .	1.6	0