Fatos Xhafa

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/750927/fatos-xhafa-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

36 485 5,354 52 h-index g-index citations papers 620 6.16 6,430 1.8 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
485	New Generation of Healthcare Services Based on Internet of Medical Things, Edge and Cloud Computing Infrastructures. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2022 , 39-50	0.4	
484	Integrating technological solutions into innovative eHealth applications 2022, 103-128		
483	Anomaly detection 2022 , 49-66		O
482	Complex event processing 2022 , 67-85		2
481	Rule-based decision support systems for eHealth 2022 , 87-99		O
480	An overview of optimization and resolution methods in satellite scheduling and spacecraft operation: description, modeling, and application 2022 , 157-217		
479	IoT Analytics and Agile Optimization for Solving Dynamic Team Orienteering Problems with Mandatory Visits. <i>Mathematics</i> , 2022 , 10, 982	2.3	1
478	Data streams@oncepts, definitions, models and applications in smart cities 2022 , 1-25		
477	Stream processing in the semantic web 2022 , 27-46		
476	Transport, mobility, and delivery in smart cities: The vision of the TransAnalytics research project 2022 , 155-171		
475	Edge Computing and IoT Analytics for Agile Optimization in Intelligent Transportation Systems. <i>Energies</i> , 2021 , 14, 6309	3.1	6
474	A Game Theoretic Framework for Surplus Food Distribution in Smart Cities and Beyond. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 5058	2.6	3
473	Allocation of applications to Fog resources via semantic clustering techniques: with scenarios from intelligent transportation systems. <i>Computing (Vienna/New York)</i> , 2021 , 103, 361-378	2.2	5
472	IEEE Access Special Section Editorial: Emerging Trends, Issues, and Challenges in Underwater Acoustic Sensor Networks. <i>IEEE Access</i> , 2021 , 9, 5862-5869	3.5	1
471	Optimization of Task Allocations in Cloud to Fog Environment with Application to Intelligent Transportation Systems. <i>Lecture Notes in Networks and Systems</i> , 2021 , 1-12	0.5	2
470	Real-Time Multimodal Emotion Classification System in E-Learning Context. <i>Proceedings of the International Neural Networks Society</i> , 2021 , 423-435	0.5	1
469	IoT-Based Computational Modeling for Next Generation Agro-Ecosystems: Research Issues, Emerging Trends and Challenges. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2021 , 1-21	0.4	

468	Real-Time Emotion Classification Using EEG Data Stream in E-Learning Contexts. Sensors, 2021, 21,	3.8	9
467	A Model for Verification and Validation of Law Compliance of Smart Contracts in IoT Environment. <i>IEEE Transactions on Industrial Informatics</i> , 2021 , 17, 7752-7759	11.9	8
466	An IoT-Based Time Constrained Spectrum Trading in Wireless Communication for Tertiary Market. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2021 , 23-48	0.4	
465	A Framework for Allocation of IoT Devices to the Fog Service Providers in Strategic Setting. <i>Lecture Notes in Networks and Systems</i> , 2020 , 340-351	0.5	O
464	Incentive Mechanism for Mobile Crowdsensing in Spatial Information Prediction Using Machine Learning. <i>Advances in Intelligent Systems and Computing</i> , 2020 , 792-803	0.4	2
463	Evaluation of IoT stream processing at edge computing layer for semantic data enrichment. <i>Future Generation Computer Systems</i> , 2020 , 105, 730-736	7.5	27
462	2020,		3
461	A budget feasible peer graded mechanism for iot-based crowdsourcing. <i>Journal of Ambient Intelligence and Humanized Computing</i> , 2020 , 11, 1531-1551	3.7	6
460	A mechanism design framework for hiring experts in e-healthcare. <i>Enterprise Information Systems</i> , 2020 , 14, 932-982	3.5	
459	Optimisation problems and resolution methods in satellite scheduling and space-craft operation: a survey. <i>Enterprise Information Systems</i> , 2019 , 1-24	3.5	15
458	Controlled secure social cloud data sharing based on a novel identity based proxy re-encryption plus scheme. <i>Journal of Parallel and Distributed Computing</i> , 2019 , 130, 153-165	4.4	14
457	Generation of game contents by social media analysis and MAS planning. <i>Computers in Human Behavior</i> , 2019 , 100, 286-294	7.7	5
456	A Hybrid Approach for Document Analysis in Digital Forensic Domain. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2019 , 170-179	0.4	2
455	An Evaluation of Neural Networks Performance for Job Scheduling in a Public Cloud Environment. <i>Advances in Intelligent Systems and Computing</i> , 2019 , 760-769	0.4	
454	A Model for Data Enrichment over IoT Streams at Edges of Internet. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2019 , 128-136	0.4	
453	Supporting Online/Offline Collaborative Work with WebRTC Application Migration. <i>Advances in Intelligent Systems and Computing</i> , 2019 , 96-104	0.4	3
452	Spectrum Trading in Wireless Communication for Tertiary Market. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2019 , 134-145	0.4	2
451	An auction framework for DaaS in cloud computing and its evaluation. <i>International Journal of Web and Grid Services</i> , 2019 , 15, 119	1.4	1

450	Semantic Analysis of Social Data Streams. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2019 , 59-70	0.4	3
449	An edge-stream computing infrastructure for real-time analysis of wearable sensors data. <i>Future Generation Computer Systems</i> , 2019 , 93, 515-528	7.5	43
448	Studying usability of AI in the IoT systems/paradigm through embedding NN techniques into mobile smart service system. <i>Computing (Vienna/New York)</i> , 2019 , 101, 1661-1685	2.2	51
447	Smart Intrusion Detection with Expert Systems. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2019 , 148-159	0.4	1
446	A distributed hybrid index for processing continuous range queries over moving objects. <i>Soft Computing</i> , 2019 , 23, 3191-3205	3.5	2
445	Energy-efficient secure outsourcing decryption of attribute based encryption for mobile device in cloud computation. <i>Journal of Ambient Intelligence and Humanized Computing</i> , 2019 , 10, 429-438	3.7	9
444	VM Deployment Methods for DaaS Model in Clouds. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2018 , 371-382	0.4	
443	An Auction Framework for DaaS in Cloud Computing. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2018 , 732-741	0.4	
442	Routing in a many-to-one communication scenario in a realistic VDTN. <i>Journal of High Speed Networks</i> , 2018 , 24, 107-118	0.4	15
441	A model for providing emotion awareness and feedback using fuzzy logic in online learning. <i>Soft Computing</i> , 2018 , 22, 963-977	3.5	9
440	A privacy-preserving fuzzy interest matching protocol for friends finding in social networks. <i>Soft Computing</i> , 2018 , 22, 2517-2526	3.5	8
439	A GA-based simulation system for WMNs: comparison analysis for different number of flows, client distributions, DCF and EDCA functions. <i>Soft Computing</i> , 2018 , 22, 2547-2555	3.5	O
438	Edge and Cluster Computing as Enabling Infrastructure for Internet of Medical Things 2018,		6
437	IoT and semantic web technologies for event detection in natural disasters. <i>Concurrency Computation Practice and Experience</i> , 2018 , 30, e4789	1.4	17
436	A Budget Feasible Mechanism for Hiring Doctors in E-Healthcare 2018,		2
435	Applications of Distributed and High Performance Computing to Enhance Online Education. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2018 , 586-600	0.4	
434	Endowing IoT Devices with Intelligent Services. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2018 , 359-370	0.4	5
433	Cloud Orchestration with ORCS and OpenStack. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2018 , 944-955	0.4	2

A Model Profile for Pattern-Based Definition and Verification of Composite Cloud Services. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2018 , 645-656	0.4	
Performance Evaluation of Clustering and Collaborative Filtering Algorithms for Resource Scheduling in a Public Cloud Environment. <i>Advances in Intelligent Systems and Computing</i> , 2018 , 121-134	4 ^{O.4}	
Multi-level Orchestration of Cloud Services in OrCS. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2018 , 357-366	0.4	1
Multi-agent Collaborative Planning in Smart Environments. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2018 , 250-261	0.4	1
PRE+: dual of proxy re-encryption for secure cloud data sharing service. <i>International Journal of Web and Grid Services</i> , 2018 , 14, 44	1.4	14
Performance Evaluation of Mahout Clustering Algorithms Using a Twitter Streaming Dataset 2017 ,		1
Total order in opportunistic networks. Concurrency Computation Practice and Experience, 2017, 29, e405	561.4	1
Impact of node density and TTL in vehicular delay tolerant networks: performance comparison of different routing protocols. <i>International Journal of Space-Based and Situated Computing</i> , 2017 , 7, 136	0.3	9
Trustworthiness for secure collaborative learning 2017 , 25-48		1
Massive data processing for effective trustworthiness modeling 2017 , 83-104		
Massive data processing for effective trustworthiness modeling 2017 , 83-104 Special issue on Ihnovative approaches of softcomputing to networking systems and applications <i>Soft Computing</i> , 2017 , 21, 5179-5180	3.5	
Special issue on Ihnovative approaches of softcomputing to networking systems and applications []	3.5	31
Special issue on Ihnovative approaches of softcomputing to networking systems and applications Soft Computing, 2017, 21, 5179-5180 An Integrated Simulation System Considering WMN-PSO Simulation System and Network Simulator		31
Special issue on Ihnovative approaches of softcomputing to networking systems and applications Soft Computing, 2017, 21, 5179-5180 An Integrated Simulation System Considering WMN-PSO Simulation System and Network Simulator 3. Lecture Notes on Data Engineering and Communications Technologies, 2017, 187-198 MobilePeerDroid: A Platform for Sharing, Controlling and Coordination in Mobile Android Teams.	0.4	31
Special issue on Ihnovative approaches of softcomputing to networking systems and applications Soft Computing, 2017, 21, 5179-5180 An Integrated Simulation System Considering WMN-PSO Simulation System and Network Simulator 3. Lecture Notes on Data Engineering and Communications Technologies, 2017, 187-198 MobilePeerDroid: A Platform for Sharing, Controlling and Coordination in Mobile Android Teams. Lecture Notes on Data Engineering and Communications Technologies, 2017, 961-972 Toward Construction of Encryption with Decryption Awareness Ability for Cloud Storage. Lecture	0.4	31
Special issue on Ihnovative approaches of softcomputing to networking systems and applications Soft Computing, 2017, 21, 5179-5180 An Integrated Simulation System Considering WMN-PSO Simulation System and Network Simulator 3. Lecture Notes on Data Engineering and Communications Technologies, 2017, 187-198 MobilePeerDroid: A Platform for Sharing, Controlling and Coordination in Mobile Android Teams. Lecture Notes on Data Engineering and Communications Technologies, 2017, 961-972 Toward Construction of Encryption with Decryption Awareness Ability for Cloud Storage. Lecture Notes on Data Engineering and Communications Technologies, 2017, 281-291 A GA-Based Simulation System for WMNs: Performance Analysis for Different WMN Architectures Considering Uniform Distribution, Transmission Rate and OLSR Protocol. Lecture Notes on Data	0.4	31 27
Special issue on Ihnovative approaches of softcomputing to networking systems and applications Soft Computing, 2017, 21, 5179-5180 An Integrated Simulation System Considering WMN-PSO Simulation System and Network Simulator 3. Lecture Notes on Data Engineering and Communications Technologies, 2017, 187-198 MobilePeerDroid: A Platform for Sharing, Controlling and Coordination in Mobile Android Teams. Lecture Notes on Data Engineering and Communications Technologies, 2017, 961-972 Toward Construction of Encryption with Decryption Awareness Ability for Cloud Storage. Lecture Notes on Data Engineering and Communications Technologies, 2017, 281-291 A GA-Based Simulation System for WMNs: Performance Analysis for Different WMN Architectures Considering Uniform Distribution, Transmission Rate and OLSR Protocol. Lecture Notes on Data Engineering and Communications Technologies, 2017, 143-152 Geometrical and topological approaches to Big Data. Future Generation Computer Systems, 2017,	0.40.40.4	
	Performance Evaluation of Clustering and Collaborative Filtering Algorithms for Resource Scheduling in a Public Cloud Environment. Advances in Intelligent Systems and Computing, 2018, 121-134. Multi-level Orchestration of Cloud Services in OrCS. Lecture Notes on Data Engineering and Communications Technologies, 2018, 357-366 Multi-agent Collaborative Planning in Smart Environments. Lecture Notes on Data Engineering and Communications Technologies, 2018, 250-261 PRE+: dual of proxy re-encryption for secure cloud data sharing service. International Journal of Web and Grid Services, 2018, 14, 44 Performance Evaluation of Mahout Clustering Algorithms Using a Twitter Streaming Dataset 2017, Total order in opportunistic networks. Concurrency Computation Practice and Experience, 2017, 29, e405. Impact of node density and TTL in vehicular delay tolerant networks: performance comparison of different routing protocols. International Journal of Space-Based and Situated Computing, 2017, 7, 136.	Performance Evaluation of Clustering and Collaborative Filtering Algorithms for Resource Scheduling in a Public Cloud Environment. Advances in Intelligent Systems and Computing, 2018, 121-134 O.4 Multi-level Orchestration of Cloud Services in OrCS. Lecture Notes on Data Engineering and Communications Technologies, 2018, 357-366 O.4 Multi-agent Collaborative Planning in Smart Environments. Lecture Notes on Data Engineering and Communications Technologies, 2018, 250-261 O.4 PRE+: dual of proxy re-encryption for secure cloud data sharing service. International Journal of Web and Grid Services, 2018, 14, 44 Independent of Mahout Clustering Algorithms Using a Twitter Streaming Dataset 2017, Total order in opportunistic networks. Concurrency Computation Practice and Experience, 2017, 29, e40564 Impact of node density and TTL in vehicular delay tolerant networks: performance comparison of different routing protocols. International Journal of Space-Based and Situated Computing, 2017, 7, 136

Design and implementation of testbed using IoT and P2P technologies: improving reliability by a fuzzy-based approach. <i>International Journal of Communication Networks and Distributed Systems</i> , 2017 , 19, 312	0.4	
Using trustworthy web services for secure e-assessment in collaborative learning grids. <i>International Journal of Web and Grid Services</i> , 2017 , 13, 49	1.4	1
Comparison Analysis by WMN-GA Simulation System for Different WMN Architectures, Normal and Uniform Distributions, DCF and EDCA Functions. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2017 , 129-142	0.4	
Comparison Analysis by WMN-GA Simulation System for Different WMN Architectures, Distributions and Routing Protocols Considering TCP. Lecture Notes on Data Engineering and Communications Technologies, 2017, 115-127	0.4	
A Fuzzy-based System for Qualified Voting in P2P Mobile Collaborative Team. <i>Lecture Notes on Data Engineering and Communications Technologies</i> , 2017 , 175-186	0.4	1
Trustworthiness modeling and methodology for secure peer-to-peer e-Assessment 2017 , 49-81		О
A Study on Performance of Hill Climbing Heuristic Method for Router Placement in Wireless Mesh Networks. <i>Studies in Computational Intelligence</i> , 2017 , 33-48	0.8	
Design and implementation of testbed using IoT and P2P technologies: improving reliability by a fuzzy-based approach. <i>International Journal of Communication Networks and Distributed Systems</i> , 2017 , 19, 312	0.4	2
Improvement of JXTA-Overlay P2P Platform 2017 , 1268-1284		
NoSQL Technologies for Real Time (Patient) Monitoring 2017 , 1112-1140		
Performance analysis of different architectures and TCP congestion-avoidance algorithms using WMN-GA simulation system. <i>Journal of High Speed Networks</i> , 2017 , 23, 163-173	0.4	
A genetic algorithm-based system for wireless mesh networks: analysis of system data considering different routing protocols and architectures. <i>Soft Computing</i> , 2016 , 20, 2627-2640	3.5	39
A comparison study for two fuzzy-based systems: improving reliability and security of JXTA-overlay P2P platform. <i>Soft Computing</i> , 2016 , 20, 2677-2687	3.5	53
	<i></i>	
Guest Editorial for Special Section on Advanced Techniques for Efficient and Reliable Cloud Storage. <i>IEEE Transactions on Computers</i> , 2016 , 65, 2346-2347	2.5	0
Guest Editorial for Special Section on Advanced Techniques for Efficient and Reliable Cloud		
Guest Editorial for Special Section on Advanced Techniques for Efficient and Reliable Cloud Storage. <i>IEEE Transactions on Computers</i> , 2016 , 65, 2346-2347		O
Guest Editorial for Special Section on Advanced Techniques for Efficient and Reliable Cloud Storage. <i>IEEE Transactions on Computers</i> , 2016 , 65, 2346-2347 Apache Mahout's k-Means vs Fuzzy k-Means Performance Evaluation 2016 , Non-transferable Unidirectional Proxy Re-Encryption Scheme for Secure Social Cloud Storage		O 2
	Using trustworthy web services for secure e-assessment in collaborative learning grids. International Journal of Web and Grid Services, 2017, 13, 49 Comparison Analysis by WMN-GA Simulation System for Different WMN Architectures, Normal and Uniform Distributions, DCF and EDCA Functions. Lecture Notes on Data Engineering and Communications Technologies, 2017, 129-142 Comparison Analysis by WMN-GA Simulation System for Different WMN Architectures, Distributions and Routing Protocols Considering TCP. Lecture Notes on Data Engineering and Communications Technologies, 2017, 115-127 A Fuzzy-based System for Qualified Voting in P2P Mobile Collaborative Team. Lecture Notes on Data Engineering and Communications Technologies, 2017, 175-186 Trustworthiness modeling and methodology for secure peer-to-peer e-Assessment 2017, 49-81 A Study on Performance of Hill Climbing Heuristic Method for Router Placement in Wireless Mesh Networks. Studies in Computational Intelligence, 2017, 33-48 Design and implementation of testbed using IoT and P2P technologies: improving reliability by a fuzzy-based approach. International Journal of Communication Networks and Distributed Systems, 2017, 19, 312 Improvement of JXTA-Overlay P2P Platform 2017, 1268-1284 NoSQL Technologies for Real Time (Patient) Monitoring 2017, 1112-1140 Performance analysis of different architectures and TCP congestion-avoidance algorithms using WMN-GA simulationBystem. Journal of High Speed Networks, 2017, 23, 163-173 A genetic algorithm-based system for wireless mesh networks: analysis of system data considering different routing protocols and architectures. Soft Computing, 2016, 20, 2627-2640 A comparison study for two fuzzy-based systems: improving reliability and security of JXTA-overlay	Using trustworthy web services for secure e-assessment in collaborative learning grids. International Journal of Web and Grid Services, 2017, 13, 49 Comparison Analysis by WMN-GA Simulation System for Different WMN Architectures, Normal and Uniform Distributions, DCF and EDCA Functions. Lecture Notes on Data Engineering and Communications Technologies, 2017, 129-142 Comparison Analysis by WMN-GA Simulation System for Different WMN Architectures, Distributions and Routing Protocols Considering TCP. Lecture Notes on Data Engineering and Communications Technologies, 2017, 115-127 A Fuzzy-based System for Qualified Voting in P2P Mobile Collaborative Team. Lecture Notes on Data Engineering and Communications Technologies, 2017, 175-186 A Study on Performance of Hill Climbing Heuristic Method for Router Placement in Wireless Mesh Networks. Studies in Computational Intelligence, 2017, 33-48 Design and implementation of testbed using loT and P2P technologies: improving reliability by a fuzzy-based approach. International Journal of Communication Networks and Distributed Systems, 2017, 19, 312 Improvement of JXTA-Overlay P2P Platform 2017, 1268-1284 NoSQL Technologies for Real Time (Patient) Monitoring 2017, 1112-1140 Performance analysis of different architectures and TCP congestion-avoidance algorithms using WMN-GA simulationBystem. Journal of High Speed Networks, 2017, 23, 163-173 A genetic algorithm-based system for wireless mesh networks: analysis of system data considering different routing protocols and architectures. Soft Computing, 2016, 20, 2627-2640 A comparison study for two fuzzy-based systems: improving reliability and security of JXTA-overlay

(2015-2016)

396	Analyzing the effects of emotion management on time and self-management in computer-based learning. <i>Computers in Human Behavior</i> , 2016 , 63, 517-529	7.7	20
395	Implementation of a New Replacement Method in WMN-PSO Simulation System and Its Performance Evaluation 2016 ,		66
394	A methodological approach for trustworthiness assessment and prediction in mobile online collaborative learning. <i>Computer Standards and Interfaces</i> , 2016 , 44, 122-136	3.5	8
393	Trust models for efficient communication in Mobile Cloud Computing and their applications to e-Commerce. <i>Enterprise Information Systems</i> , 2016 , 10, 982-1000	3.5	7
392	Interface and results visualization of WMN-GA simulation system: Evaluation for Exponential and Weibull distributions considering different transmission rates. <i>Computer Standards and Interfaces</i> , 2016 , 44, 150-158	3.5	
391	Brokering of Cloud Infrastructures Driven by Simulation of Scientific Workloads. <i>Lecture Notes in Information Systems and Organisation</i> , 2016 , 239-250	0.5	
390	Cloud-Based Monitoring for Patients with Dementia 2016 , 551-576		
389	Implementation and evaluation of a simulation system based on particle swarm optimisation for node placement problem in wireless mesh networks. <i>International Journal of Communication Networks and Distributed Systems</i> , 2016 , 17, 1	0.4	63
388	Performance Analysis of WMNs by WMN-GA Simulation System for Exponential Distribution Considering EDCA and DCF 2016 ,		1
387	A Fuzzy-Based Approach for Classifying Students' Emotional States in Online Collaborative Work 2016 ,		2
386	Energy-Aware Analysis of Synchronizing a Groupware Calendar 2016 ,		1
385	On Sharing and Synchronizing Groupware Calendars Under Android Platform 2016 ,		1
384	Investigation of Fitness Function Weight-Coefficients for Optimization in WMN-PSO Simulation System 2016 ,		3
383	Advanced knowledge discovery techniques from Big Data and Cloud Computing. <i>Enterprise Information Systems</i> , 2016 , 10, 945-946	3.5	6
382	Privacy-aware attribute-based PHR sharing with user accountability in cloud computing. <i>Journal of Supercomputing</i> , 2015 , 71, 1607-1619	2.5	34
381	Security in online web learning assessment. World Wide Web, 2015, 18, 1655-1676	2.9	10
380	Solving mesh router nodes placement problem in Wireless Mesh Networks by Tabu Search algorithm. <i>Journal of Computer and System Sciences</i> , 2015 , 81, 1417-1428	1	23
379	Frontiers in intelligent cloud services. World Wide Web, 2015, 18, 1519-1521	2.9	1

378	Processing and Analytics of Big Data Streams with Yahoo!S4 2015 ,		18
377	Intelligent computing in large-scale systems. <i>Knowledge Engineering Review</i> , 2015 , 30, 137-139	2.1	2
376	Analysis of WMN-HC Simulation System Data Using Friedman Test 2015 ,		25
375	Performance Analysis of WMN-GA Simulation System for Different WMN Architectures Considering OLSR 2015 ,		1
374	An application framework to systematically develop complex learning resources based on collaborative knowledge engineering. <i>International Journal of Applied Mathematics and Computer Science</i> , 2015 , 25, 361-375	1.7	2
373	A Software Chain Approach to Big Data Stream Processing and Analytics 2015 ,		6
372	L-EncDB: A lightweight framework for privacy-preserving data queries in cloud computing. <i>Knowledge-Based Systems</i> , 2015 , 79, 18-26	7.3	123
371	Deadline scheduling for aperiodic tasks in inter-Cloud environments: a new approach to resource management. <i>Journal of Supercomputing</i> , 2015 , 71, 1754-1765	2.5	19
370	P2P Data Replication: Techniques and Applications. <i>Modeling and Optimization in Science and Technologies</i> , 2015 , 145-166	0.6	6
369	Designing cloud-based electronic health record system with attribute-based encryption. <i>Multimedia Tools and Applications</i> , 2015 , 74, 3441-3458	2.5	45
368	Optimization of Giant Component and Number of Covered Users in Wireless Mesh Networks: A Comparison Study 2015 ,		1
367	Analysis of mesh router placement in wireless mesh networks using Friedman test considering different meta-heuristics. <i>International Journal of Communication Networks and Distributed Systems</i> , 2015 , 15, 84	0.4	16
366	Reputation-guided evolutionary scheduling algorithm for independent tasks in inter-clouds environments. <i>International Journal of Web and Grid Services</i> , 2015 , 11, 4	1.4	6
365	Improving reliability of JXTA-Overlay P2P platform: A comparison study for two fuzzy-based systems. <i>Journal of High Speed Networks</i> , 2015 , 21, 27-42	0.4	20
364	Guest Editor® Foreword. Journal of Interconnection Networks, 2015, 15, 1502001	0.4	
363	An Ontology about Emotion Awareness and Affective Feedback in Elearning 2015,		6
362	Analysis of Node Placement in Wireless Mesh Networks Using Friedman Test: A Comparison Study for Tabu Search and Hill Climbing 2015 ,		1
361	A massive data processing approach for effective trustworthiness in online learning groups. <i>Concurrency Computation Practice and Experience</i> , 2015 , 27, 1988-2003	1.4	6

(2015-2015)

360	A web interface for wireless mesh networks based on heuristic algorithms: optimisation and analysis for different scenarios. <i>International Journal of Web and Grid Services</i> , 2015 , 11, 327	1.4	2	
359	Evaluation of intra-group optimistic data replication in P2P groupware systems. <i>Concurrency Computation Practice and Experience</i> , 2015 , 27, 870-881	1.4	7	
358	Advanced Modeling and Services Based Mathematics for Ubiquitous Computing. <i>Mathematical Problems in Engineering</i> , 2015 , 2015, 1-3	1.1		
357	SPRINT-SELF: Social-Based Routing and Selfish Node Detection in Opportunistic Networks. <i>Mobile Information Systems</i> , 2015 , 2015, 1-12	1.4	6	
356	Emerging services and technologies in wireless networks. <i>Journal of High Speed Networks</i> , 2015 , 21, 81	-82.4	1	
355	MOMTH: multi-objective scheduling algorithm of many tasks in Hadoop. <i>Cluster Computing</i> , 2015 , 18, 1011-1024	2.1	15	
354	Outsourcing Decryption of Attribute Based Encryption with Energy Efficiency 2015,		6	
353	On Local vs. Population-Based Heuristics for Ground Station Scheduling 2015 ,		4	
352	A MapReduce Approach for Processing Student Data Activity in a Peer-to-Peer Networked Setting 2015 ,		1	
351	Towards a Notification System for Mobile Devices to Support Collaborative Learning 2015,		1	
350	Effects of Security on Reliability of JXTA-Overlay P2P Platform a Comparison Study for Two Fuzzy-Based Systems 2015 ,		3	
349	A PSO-based Simulation System for Node Placement in Wireless Mesh Networks: Evaluation Results for Different Replacement Methods 2015 ,		2	
348	Performance Evaluation of a MapReduce Hadoop-Based Implementation for Processing Large Virtual Campus Log Files 2015 ,		3	
347	On Streaming Consistency of Big Data Stream Processing in Heterogenous Clutsers 2015 ,		7	
346	Performance Evaluation of Data Mining Frameworks in Hadoop Cluster Using Virtual Campus Log Files 2015 ,		1	
345	A Knowledge Management Process to Enhance Trustworthiness-based Security in On-line Learning Teams 2015 ,		3	
344	Secure deduplication storage systems supporting keyword search. <i>Journal of Computer and System Sciences</i> , 2015 , 81, 1532-1541	1	51	
343	. IEEE Transactions on Cloud Computing, 2015 , 3, 195-205	3.3	51	

342	Node placement for wireless mesh networks: Analysis of WMN-GA system simulation results for different parameters and distributions. <i>Journal of Computer and System Sciences</i> , 2015 , 81, 1496-1507	1	12
341	Event-Based Awareness Services for P2P Groupware Systems. <i>Informatica</i> , 2015 , 26, 135-157	2.9	3
340	Improvement of JXTA-Overlay P2P Platform. <i>International Journal of Distributed Systems and Technologies</i> , 2015 , 6, 45-62	0.3	17
339	Enabling Vehicular Data with Distributed Machine Learning. <i>Lecture Notes in Computer Science</i> , 2015 , 89-102	0.9	3
338	Cloud-Based Monitoring for Patients with Dementia. <i>Advances in Medical Technologies and Clinical Practice Book Series</i> , 2015 , 211-237	0.3	
337	Data Modeling for Socially Based Routing in Opportunistic Networks. <i>Modeling and Optimization in Science and Technologies</i> , 2015 , 29-55	0.6	
336	Semantics, intelligent processing and services for big data. <i>Future Generation Computer Systems</i> , 2014 , 37, 201-202	7.5	22
335	Semantic Valence Modeling: Emotion Recognition and Affective States in Context-Aware Systems 2014 ,		12
334	Towards a Normalized Trustworthiness Approach to Enhance Security in On-Line Assessment 2014,		5
333	Simulation, Modeling, and Performance Evaluation Tools for Cloud Applications 2014,		3
333 332	Simulation, Modeling, and Performance Evaluation Tools for Cloud Applications 2014 , Secure Deduplication Storage Systems with Keyword Search 2014 ,		3
		3.5	
332	Secure Deduplication Storage Systems with Keyword Search 2014 , Trustworthiness in P2P: performance behaviour of two fuzzy-based systems for JXTA-overlay	3.5	8
332	Secure Deduplication Storage Systems with Keyword Search 2014, Trustworthiness in P2P: performance behaviour of two fuzzy-based systems for JXTA-overlay platform. Soft Computing, 2014, 18, 1783-1793 Performance evaluation of WMN-GA system for different settings of population size and number of		8 76
332 331 330	Secure Deduplication Storage Systems with Keyword Search 2014, Trustworthiness in P2P: performance behaviour of two fuzzy-based systems for JXTA-overlay platform. Soft Computing, 2014, 18, 1783-1793 Performance evaluation of WMN-GA system for different settings of population size and number of generations. Human-centric Computing and Information Sciences, 2014, 4, A Smart Environment and Heuristic Diagnostic Teaching Principle-Based System for Supporting		8 76
33 ² 33 ¹ 33 ⁰	Secure Deduplication Storage Systems with Keyword Search 2014, Trustworthiness in P2P: performance behaviour of two fuzzy-based systems for JXTA-overlay platform. Soft Computing, 2014, 18, 1783-1793 Performance evaluation of WMN-GA system for different settings of population size and number of generations. Human-centric Computing and Information Sciences, 2014, 4, A Smart Environment and Heuristic Diagnostic Teaching Principle-Based System for Supporting Children with Autism during Learning 2014, Effects of population size for location-aware node placement in WMNs: evaluation by a genetic	5.4	8 76 1 8
332 331 330 329 328	Secure Deduplication Storage Systems with Keyword Search 2014, Trustworthiness in P2P: performance behaviour of two fuzzy-based systems for JXTA-overlay platform. Soft Computing, 2014, 18, 1783-1793 Performance evaluation of WMN-GA system for different settings of population size and number of generations. Human-centric Computing and Information Sciences, 2014, 4, A Smart Environment and Heuristic Diagnostic Teaching Principle-Based System for Supporting Children with Autism during Learning 2014, Effects of population size for location-aware node placement in WMNs: evaluation by a genetic algorithmbased approach. Personal and Ubiquitous Computing, 2014, 18, 261-269 A GA-Based Simulation System for WMNs: Performance Analysis for Different WMN Architectures	5.4	8 76 1 8

324	A Fuzzy-Based Reliability System for JXTA-Overlay P2P Platform Considering Number of Interaction, Security, and Packet Loss Parameters 2014 ,		1
323	A simulation system for WMN based on SA: performance evaluation for different instances and starting temperature values. <i>International Journal of Space-Based and Situated Computing</i> , 2014 , 4, 209	0.3	41
322	A Methodological Approach to Modelling Trustworthiness in Online Collaborative Learning 2014,		3
321	Performance Evaluation Considering Iterations per Phase and SA Temperature in WMN-SA System. <i>Mobile Information Systems</i> , 2014 , 10, 321-330	1.4	20
320	Application of WMN-SA Simulation System for Node Placement in Wireless Mesh Networks. <i>International Journal of Mobile Computing and Multimedia Communications</i> , 2014 , 6, 13-21	0.7	42
319	Data Replication Strategies in P2P Systems: A Survey 2014 ,		14
318	Implementation of a Medical Support System Considering P2P and IoT Technologies 2014,		7
317	A Fuzzy-Based Reliability System for P2P Communication Considering Local Score, Number of Authentic Files, and Number of Interactions Parameters 2014 ,		1
316	Node Placement in WMNs Using WMN-HC System and Different Movement Methods 2014,		1
315	A Collective Intelligence Approach for Building Student's Trustworthiness Profile in Online Learning 2014 ,		3
314	Security in Online Learning Assessment Towards an Effective Trustworthiness Approach to Support E-Learning Teams 2014 ,		10
313	Context-as-a-Service: A Service Model for Cloud-Based Systems 2014 ,		10
312	A comparison study of Hill Climbing, Simulated Annealing and Genetic Algorithm for node placement problem in WMNs. <i>Journal of High Speed Networks</i> , 2014 , 20, 55-66	0.4	64
311	A Fuzzy-Based Reliability System for P2P Communication Considering Number of Interactions, Local Score and Security Parameters 2014 ,		2
310	Towards a Platform-Independent Event Management Model for Web Collaboration 2014,		1
309	Emerging Technologies for Monitoring Behavioural and Psychological Symptoms of Dementia 2014		5
308	Software Agents in Large Scale Open E-learning: A Critical Component for the Future of Massive Online Courses (MOOCs) 2014 ,		10
307	Predicting Trustworthiness Behavior to Enhance Security in On-line Assessment 2014 ,		2

306	A methodology for assessing the predictable behaviour of mobile users in wireless networks. <i>Concurrency Computation Practice and Experience</i> , 2014 , 26, 1215-1230	1.4	9
305	A Tabu Search Algorithm for Ground Station Scheduling Problem 2014 ,		8
304	Evaluation of Effects of Grid Shape in WMN-SA System for Solution of Node Placement Problem in WMNs 2014 ,		1
303	Towards an Emotion Labeling Model to Detect Emotions in Educational Discourse 2014,		6
302	Node Placement in WMNs Using WMN-GA System Considering Uniform and Normal Distribution of Mesh Clients 2014 ,		5
301	WMN-SA System for Node Placement in WMNs: Evaluation for Different Realistic Distributions of Mesh Clients 2014 ,		4
300	Collaboration through Patient Data Access and Sharing in the Cloud 2014 ,		4
299	Scalability, Memory Issues and Challenges in Mining Large Data Sets 2014 ,		7
298	A Comparison Study on Meta-Heuristics for Ground Station Scheduling Problem 2014 ,		2
297	MOMC: Multi-objective and Multi-constrained Scheduling Algorithm of Many Tasks in Hadoop 2014 ,		5
296	'NoSQL' and Electronic Patient Record Systems: Opportunities and Challenges 2014,		10
295	Analysis of Mesh Router Placement in Wireless Mesh Networks Using Friedman Test 2014 ,		19
294	A Study of Using SmartBox to Embed Emotion Awareness through Stimulation into E-learning Environments 2014 ,		2
293	Intelligent services for Big Data science. Future Generation Computer Systems, 2014, 37, 267-281	7.5	162
292	Parallel Programming Paradigms and Frameworks in Big Data Era. <i>International Journal of Parallel Programming</i> , 2014 , 42, 710-738	1.5	44
291	An efficient PHR service system supporting fuzzy keyword search and fine-grained access control. <i>Soft Computing</i> , 2014 , 18, 1795-1802	3.5	43
290	On the Performance of Oracle Grid Engine Queuing System for Computing Intensive Applications. <i>Journal of Information Processing Systems</i> , 2014 , 10, 491-502		7
289	Techniques and Applications to Analyze Mobility Data. Studies in Computational Intelligence, 2014, 203-2	2 3 78	

(2013-2013)

288	Performance Comparison of OLSR and AODV Protocols in a VANET Crossroad Scenario. <i>Lecture Notes in Electrical Engineering</i> , 2013 , 37-45	0.2	10
287	WMNIA: a simulation system for WMNs and its evaluation considering selection operators. <i>Journal of Ambient Intelligence and Humanized Computing</i> , 2013 , 4, 323-330	3.7	42
286	Special issue on cyber physical systems. Computing (Vienna/New York), 2013, 95, 923-926	2.2	3
285	Application of SmartBox end-device for medical care using JXTA-Overlay P2P system. <i>Computing</i> (Vienna/New York), 2013 , 95, 1039-1051	2.2	2
284	Experimental results from a MANET testbed in outdoor bridge environment considering BATMAN routing protocol. <i>Computing (Vienna/New York)</i> , 2013 , 95, 1073-1086	2.2	3
283	Analysis of P2P Communications in Online Collaborative Teamwork Settings 2013,		2
282	A Review on Massive E-Learning (MOOC) Design, Delivery and Assessment 2013,		113
281	Performance Evaluation of OLSR Protocol in a Grid Manhattan VANET Scenario for Different Applications 2013 ,		5
280	Steady State Genetic Algorithm for Ground Station Scheduling Problem 2013,		7
279	A fuzzy-based reliability system for knowledge sharing between robots in P2P JXTA-overlay platform. <i>Cluster Computing</i> , 2013 , 16, 933-945	2.1	4
278	Distributed-based massive processing of activity logs for efficient user modeling in a Virtual Campus. <i>Cluster Computing</i> , 2013 , 16, 829-844	2.1	26
277	Performance Evaluation of OLSR and AODV Protocols in a VANET Crossroad Scenario 2013,		17
²⁷⁷	Performance Evaluation of OLSR and AODV Protocols in a VANET Crossroad Scenario 2013, Context and the Cloud: Situational Awareness in Mobile Systems 2013,		17 5
276	Context and the Cloud: Situational Awareness in Mobile Systems 2013 , Performance Analysis of WMNs Using Simulated Annealing Algorithm for Different Temperature		5
276 275	Context and the Cloud: Situational Awareness in Mobile Systems 2013, Performance Analysis of WMNs Using Simulated Annealing Algorithm for Different Temperature Values 2013,		5
276 275 274	Context and the Cloud: Situational Awareness in Mobile Systems 2013, Performance Analysis of WMNs Using Simulated Annealing Algorithm for Different Temperature Values 2013, Analysis of WMN-GA Simulation Results: WMN Performance Considering Hot-Spot Scenario 2013,		5 2 1

270	Building Event-Based Services for Awareness in P2P Groupware Systems 2013,		1
269	Current Trends in Emotional e-Learning: New Perspectives for Enhancing Emotional Intelligence 2013 ,		6
268	Performance Evaluation of AODV Routing Protocol in VANETs Considering Multi-flows Traffic 2013		1
267	P2P data replication and trustworthiness for a JXTA-Overlay P2P system using fuzzy logic. <i>Applied Soft Computing Journal</i> , 2013 , 13, 321-328	7.5	4
266	Evaluation of contact synchronization algorithms for the Android platform. <i>Mathematical and Computer Modelling</i> , 2013 , 57, 2895-2903		3
265	Performance evaluation of an integrated fuzzy-based trustworthiness system for P2P communications in JXTA-overlay. <i>Neurocomputing</i> , 2013 , 122, 43-49	5.4	3
264	Utilizing artificial neural networks and genetic algorithms to build an algo-trading model for intra-day foreign exchange speculation. <i>Mathematical and Computer Modelling</i> , 2013 , 58, 1249-1266		59
263	Evaluation of struggle strategy in Genetic Algorithms for ground stations scheduling problem. Journal of Computer and System Sciences, 2013 , 79, 1086-1100	1	23
262	Monitoring and Detection of Agitation in Dementia: Towards Real-Time and Big-Data Solutions 2013 ,		24
261	An IoT-Based Framework for Supporting Children with Autism Spectrum Disorder. <i>Lecture Notes in Electrical Engineering</i> , 2013 , 193-202	0.2	4
260	A Fuzzy-Based System for Evaluation of Trustworthiness for P2P Communication in JXTA-Overlay. <i>Lecture Notes in Electrical Engineering</i> , 2013 , 451-460	0.2	
259	A Hill Climbing Algorithm for Ground Station Scheduling. <i>Lecture Notes in Electrical Engineering</i> , 2013 , 131-139	0.2	1
258	Performance Evaluation of WMN-GA for Wireless Mesh Networks Considering Mobile Mesh Clients 2013 ,		2
257	Investigation of AODV Throughput Considering RREQ, RREP and RERR Packets 2013,		5
256	A Simulated Annealing Algorithm for Ground Station Scheduling Problem 2013,		8
255	Data as a Service (DaaS) for Sharing and Processing of Large Data Collections in the Cloud 2013 ,		34
254	Local Search and Genetic Algorithms for Satellite Scheduling Problems 2013,		8
253	A Comparison Study of GA and HC for Mesh Router Node Placement in Wireless Mesh Networks 2013 ,		1

252	Performance Analysis of WMNs Using Hill Climbing Algorithm Considering Normal and Uniform Distribution of Mesh Clients 2013 ,		2	
251	A Fuzzy-Based System for Peer Reliability in JXTA-Overlay P2P Considering Number of Interactions 2013 ,		42	
250	An IoT-Based System for Supporting Children with Autism Spectrum Disorder 2013,		8	
249	Using STK Toolkit for Evaluating a GA Base Algorithm for Ground Station Scheduling 2013,		5	
248	Coordination in Android Mobile Teams 2013,		1	
247	Evaluation of a MANET Testbed for Central Bridge and V-Shape Bridge Scenarios Using BATMAN Routing Protocol 2013 ,		3	
246	Smart care spaces: needs for intelligent at-home care. <i>International Journal of Space-Based and Situated Computing</i> , 2013 , 3, 35	0.3	25	
245	Detection of the onset of agitation in patients with dementia: real-time monitoring and the application of big-data solutions. <i>International Journal of Space-Based and Situated Computing</i> , 2013 , 3, 136	0.3	26	
244	Performance Evaluation of WMNs Using Hill Climbing Algorithm Considering Giant Component and Different Distributions. <i>Lecture Notes in Electrical Engineering</i> , 2013 , 161-167	0.2	1	
243	WMN-GA System for Node Placement in WMNs: Effect of Grid Shape. <i>Lecture Notes in Electrical Engineering</i> , 2013 , 47-56	0.2		
242	Performance Evaluation of WMNs Using Simulated Annealing Algorithm Considering Different Number Iterations per Phase and Normal Distribution. <i>Lecture Notes in Electrical Engineering</i> , 2013 , 169-	-176		
241	Multi-Flow Traffic Investigation of AODV Considering Routing Control Packets. <i>Lecture Notes in Electrical Engineering</i> , 2013 , 89-100	0.2		
240	Performance Evaluation of DYMO Protocol in Different VANET Scenarios 2012,		1	
239	A study on the performance of local search versus population-based methods for mesh router nodes placement problem. <i>Journal of Intelligent Manufacturing</i> , 2012 , 23, 2057-2067	6.7	1	
238	Node Placement in WMNs and Visualization of Evolutionary Computation Process Using WMN-GA System 2012 ,		1	
237	Tuning of Operators in Memetic Algorithms for Independent Batch Scheduling in Computational Grids 2012 ,		1	
236	Evaluation of a MANET Testbed in Outdoor Bridge Environment Using BATMAN Routing Protocol 2012 ,		2	
235	Using Data Replication for Improving QoS in MANETs 2012 ,		2	

234	Mission Operations Scheduling: Complexity and Resolution Methods 2012,		1
233	Investigation of Packet Loss in Mobile WSNs for AODV Protocol and Different Radio Models 2012,		4
232	Cloud Virtual Machine Scheduling: Modelling the Cloud Virtual Machine Instantiation 2012,		10
231	A Struggle Genetic Algorithm for Ground Stations Scheduling Problem 2012 ,		2
230	Performance Comparison of DSDV and DYMO Protocols for Vehicular Ad Hoc Networks 2012,		7
229	An Integrated Fuzzy-based Trustworthiness System for P2P Communications in JXTA-Overlay 2012 ,		1
228	Mining Navigation Patterns in a Virtual Campus 2012 ,		7
227	Multimedia Transmissions over a MANET Testbed: Problems and Issues 2012,		4
226	E-Assessment of Individual and Group Learning Processes. <i>Journal of Computational and Theoretical Nanoscience</i> , 2012 , 9, 286-303	3	2
225	Data Replication and Synchronization in P2P Collaborative Systems 2012 ,		5
224	Data Replication in P2P Collaborative Systems 2012 ,		8
223	P2P Solutions to Efficient Mobile Peer Collaboration in MANETs 2012 ,		22
222	Evaluation of Wireless Sensor Networks for Multi Mobile Events Using Different Topologies, Protocols and Radio Propagation Models. <i>Lecture Notes in Electrical Engineering</i> , 2012 , 659-667	2	1
221	A Fuzzy-Based Simulation System for Cluster-Head Selection and Sensor Speed Control in Wireless Sensor Networks 2012 ,		3
220	Performance of OLSR and DSDV Protocols in a VANET Scenario: Evaluation Using CAVENET and NS3 2012 ,		16
219	A Fuzzy-Based Cluster-Head Selection System for WSNs: A Comparison Study for Static and Mobile Sensors 2012 ,		1
218	From Meta-computing to Interoperable Infrastructures: A Review of Meta-schedulers for HPC, Grid and Cloud 2012 ,		24
217	An Interface for Simulating Node Placement in Wireless Mesh Networks 2012 ,		3

216	Evaluation of Genetic Algorithms for Single Ground Station Scheduling Problem 2012,		8
215	A fuzzy-based data replication system for QoS improvement in MANETs 2012,		5
214	Genetic Algorithms for Satellite Scheduling Problems. <i>Mobile Information Systems</i> , 2012 , 8, 351-377	1.4	47
213	Performance Evaluation of WMN-GA for Different Mutation and Crossover Rates Considering Number of Covered Users Parameter. <i>Mobile Information Systems</i> , 2012 , 8, 1-16	1.4	11
212	Local search methods for efficient router nodes placement in wireless mesh networks. <i>Journal of Intelligent Manufacturing</i> , 2012 , 23, 1293-1303	6.7	11
211	Integration of task abortion and security requirements in GA-based meta-heuristics for independent batch grid scheduling. <i>Computers and Mathematics With Applications</i> , 2012 , 63, 350-364	2.7	22
210	An Event-Based Approach to Support A3: Anytime, Anywhere, Awareness in Online Learning Teams 2012 ,		2
209	Supporting Online Coordination of Learning Teams through Mobile Devices 2012,		1
208	Performance Analysis of DSR and DYMO Routing Protocols for VANETs 2012,		1
207	A P2P Replication-Aware Approach for Content Distribution in E-Learning Systems 2012 ,		4
206	A Fuzzy-Based Trustworthiness System for JXTA-Overlay P2P Platform and Its Performance Evaluation Considering Three Parameters 2012 ,		2
205	A Comparison Study between Two Fuzzy-Based Trustworthiness Systems for P2P Networks 2012 ,		1
204	Exploring Predictability in Mobile Interaction 2012,		20
203	Evaluation of WMN-GA for different mutation operators. <i>International Journal of Space-Based and Situated Computing</i> , 2012 , 2, 149	0.3	47
202	Hybrid algorithms for independent batch scheduling in grids. <i>International Journal of Web and Grid Services</i> , 2012 , 8, 134	1.4	9
201	Meta-scheduling issues in interoperable HPCs, grids and clouds. <i>International Journal of Web and Grid Services</i> , 2012 , 8, 153	1.4	24
200	Intelligent Traffic Lights To Reduce Vehicle Emissions 2012 ,		4
199	A Comparison Study for Different Settings of Crossover and Mutation Rates Using WMN-GA Simulation System. <i>Lecture Notes in Electrical Engineering</i> , 2012 , 643-650	0.2	1

198	A Survey on MANET Testbeds and Mobility Models. Lecture Notes in Electrical Engineering, 2012, 651-6576	0.2	7
197	Performance Evaluation of WMN-GA Simulation System for Different Settings of Genetic Operators Considering Giant Component and Number of Covered Users. <i>International Journal of Distributed</i> Systems and Technologies, 2012 , 3, 1-14	0.3	2
196	A New Fuzzy-based Cluster-Head Selection System for WSNs 2011 ,		8
195	Application of GA and Multi-objective Optimization for QoS Routing in Ad-Hoc Networks 2011 ,		4
194	2011,		2
193	Scanning Environments with Swarms of Learning Birds: A Computational Intelligence Approach for Managing Disasters 2011 ,		5
192	Energy-saving in Wireless Sensor Networks Considering Mobile Sensor Nodes 2011,		3
191	Comparison Evaluation of Static and Mobile Sensor Nodes in Wireless Sensor Networks Considering Packet-Loss and Delay Metrics 2011 ,		3
190	A Genetic Algorithm for Ground Station Scheduling 2011 ,		9
189	Optimization Problems and Resolution Methods for Node Placement in Wireless Mesh Networks 2011 ,		5
188	A Fuzzy-Based Cluster-Head Selection System for WSNs Considering Sensor Node Movement 2011 ,		4
187	Utilization of Markov Model and Non-Parametric Belief Propagation for Activity-Based Indoor Mobility Prediction in Wireless Networks 2011 ,		4
186	VANET Simulators: A Survey on Mobility and Routing Protocols 2011 ,		22
185	Modern approaches to modeling user requirements on resource and task allocation in hierarchical computational grids. <i>International Journal of Applied Mathematics and Computer Science</i> , 2011 , 21, 243-25	57	17
184	Secure Communication Setup for a P2P-Based JXTA-Overlay Platform. <i>IEEE Transactions on Industrial Electronics</i> , 2011 , 58, 2086-2096	3.9	10
183	JXTA-Overlay: A P2P Platform for Distributed, Collaborative, and Ubiquitous Computing. <i>IEEE</i> Transactions on Industrial Electronics, 2011 , 58, 2163-2172	3.9	51
182	Performance of Wireless Sensor Networks for Different Mobile Event Path Scenarios. <i>International Journal of Distributed Systems and Technologies</i> , 2011 , 2, 49-63	0.3	3
181	QoS Routing in Ad-Hoc Networks Using GA and Multi-Objective Optimization. <i>Mobile Information Systems</i> , 2011 , 7, 169-188	1.4	8

180	Towards a corporate governance trust agent scoring model for collaborative virtual organisations. <i>International Journal of Grid and Utility Computing</i> , 2011 , 2, 98	1.1	21
179	Application of Genetic Algorithms for QoS routing in mobile ad-hoc networks: approaches and solutions. <i>International Journal of Business Intelligence and Data Mining</i> , 2011 , 6, 215	0.3	1
178	Goodput and PDR analysis of AODV, OLSR and DYMO protocols for vehicular networks using CAVENET. <i>International Journal of Grid and Utility Computing</i> , 2011 , 2, 130	1.1	51
177	Supporting situated computing with intelligent multi-agent systems. <i>International Journal of Space-Based and Situated Computing</i> , 2011 , 1, 30	0.3	10
176	A next generation emerging technologies roadmap for enabling collective computational intelligence in disaster management. <i>International Journal of Space-Based and Situated Computing</i> , 2011 , 1, 76	0.3	30
175	A simulated annealing algorithm for router nodes placement problem in Wireless Mesh Networks. <i>Simulation Modelling Practice and Theory</i> , 2011 , 19, 2276-2284	3.9	33
174	Providing effective feedback, monitoring and evaluation to on-line collaborative learning discussions. <i>Computers in Human Behavior</i> , 2011 , 27, 1372-1381	7.7	34
173	Application of a JXTA-overlay P2P system for end-device control and e-learning. <i>Multimedia Tools and Applications</i> , 2011 , 53, 371-389	2.5	2
172	Grid and P2P middleware for wide-area parallel processing. <i>Concurrency Computation Practice and Experience</i> , 2011 , 23, 458-476	1.4	2
171	Engineering SLS Algorithms for Statistical Relational Models 2011 ,		1
170	Genetic Algorithms for Energy-Aware Scheduling in Computational Grids 2011,		33
169	Performance Evaluation of Wireless Sensor Networks for Mobile Sensor Nodes Considering Goodput and Depletion Metrics 2011 ,		1
168	Performance Evaluation of WMN Using WMN-GA System for Different Mutation Operators 2011,		10
167	Comparison Evaluation of Single and Multi Mobile Events Wireless Sensor Networks Using AODV Protocol 2011 ,		4
166	Middleware for Data Sensing and Processing in VANETs 2011,		5
165	Evaluation of an Intelligent Fuzzy-Based Cluster Head Selection System for WSNs Using Different Parameters 2011 ,		6
164	Supporting the Security Awareness of GA-based Grid Schedulers by Artificial Neural Networks 2011 ,		1

162	A Collective Intelligence Resource Management Dynamic Approach for Disaster Management: A Density Survey of Disasters Occurrence 2011 ,		9
161	A Tabu Search Algorithm for Efficient Node Placement in Wireless Mesh Networks 2011 ,		2
160	Using Massive Processing and Mining for Modelling and Decision Making in Online Learning Systems 2011 ,		2
159	On Exploitation vs Exploration of Solution Space for Grid Scheduling 2011 ,		3
158	A Fuzzy-Based Trustworthiness System for JXTA-Overlay P2P Platform 2011 ,		8
157	An Event-based Approach to Supporting Team Coordination and Decision Making in Disaster Management Scenarios 2011 ,		11
156	Enhancing the genetic-based scheduling in computational grids by a structured hierarchical population. <i>Future Generation Computer Systems</i> , 2011 , 27, 1035-1046	7.5	44
155	Using Grid services to parallelize IBM's Generic Log Adapter. <i>Journal of Systems and Software</i> , 2011 , 84, 55-62	3.3	9
154	Special issue foreword: Advances in pervasive computing systems and applications. <i>Journal of Computer and System Sciences</i> , 2011 , 77, 595-596	1	
153	Meeting security and user behavior requirements in Grid scheduling. <i>Simulation Modelling Practice and Theory</i> , 2011 , 19, 213-226	3.9	20
152	Modeling and performance analysis of networking and collaborative systems. <i>Simulation Modelling Practice and Theory</i> , 2011 , 19, 1-4	3.9	5
151	Foreword from guest editors advances in modelling and simulation in wireless networks. <i>Simulation Modelling Practice and Theory</i> , 2011 , 19, 1709-1710	3.9	
150	Stochastic simulation and modelling of metabolic networks in a machine learning framework. Simulation Modelling Practice and Theory, 2011 , 19, 1957-1966	3.9	2
149	Goodput Evaluation of AODV, OLSR and DYMO Protocols for Vehicular Networks Using CAVENET 2011 ,		4
148	A Fuzzy-Based Reliability System for JXTA-Overlay P2P Platform 2011 ,		2
147	A Taxonomy of Data Scheduling in Data Grids and Data Centers: Problems and Intelligent Resolution Techniques 2011 ,		3
146	An Exploratory Social Network Analysis of Academic Research Networks 2011,		8
145	A Study on the Effect of Mutation in Genetic Algorithms for Mesh Router Placement Problem in Wireless Mesh Networks 2011 ,		5

144	A GA+TS Hybrid Algorithm for Independent Batch Scheduling in Computational Grids 2011,		7	
143	EVALUATION OF WMN-GA FOR DIFFERENT MUTATION AND CROSSOVER RATES CONSIDERING GIANT COMPONENT PARAMETER. <i>Journal of Interconnection Networks</i> , 2011 , 12, 205-219	0.4	2	
142	Evaluation of Optimistic Replication Techniques for Dynamic Files in P2P Systems 2011,		3	
141	Comparison Evaluation for Mobile and Static Sensor Nodes in Wireless Sensor Networks Considering TwoRayGround and Shadowing Propagation Models 2011 ,		1	
140	Evaluation of Hybridization of GA and TS Algorithms for Independent Batch Scheduling in Computational Grids 2011 ,		5	
139	Introduction to Reasoning in Event-Based Distributed Systems. <i>Studies in Computational Intelligence</i> , 2011 , 1-10	0.8	3	
138	User-Centred Evaluation and Organisational Acceptability of a Distributed Repository to Support Communities of Learners. <i>Studies in Computational Intelligence</i> , 2011 , 1-25	0.8	2	
137	Utilizing Next Generation Emerging Technologies for Enabling Collective Computational Intelligence in Disaster Management. <i>Studies in Computational Intelligence</i> , 2011 , 503-526	0.8	4	
136	Learning Structure and Schemas from Heterogeneous Domains in Networked Systems Surveyed. <i>Studies in Computational Intelligence</i> , 2011 , 1-16	0.8	2	
135	Task Allocation Oriented Users Decisions in Computational Grid. <i>Studies in Computational Intelligence</i> , 2011 , 1-24	0.8		
134	Using Mobile Devices to Support Online Collaborative Learning. <i>Mobile Information Systems</i> , 2010 , 6, 27-47	1.4	34	
133	Implementation of CAVENET and Its Usage for Performance Evaluation of AODV, OLSR and DYMO Protocols in Vehicular Networks. <i>Mobile Information Systems</i> , 2010 , 6, 213-227	1.4	3	
132	ENHANCING KNOWLEDGE MANAGEMENT IN ONLINE COLLABORATIVE LEARNING. <i>International Journal of Software Engineering and Knowledge Engineering</i> , 2010 , 20, 485-497	1	20	
131	Tuning Operators of Genetic Algorithms for Mesh Routers Placement Problem in Wireless Mesh Networks 2010 ,		2	
130	2010,		15	
129	Implementation of SmartBox End-Device for a P2P System and Its Evaluation for E-Learning and Medical Applications 2010 ,		15	
128	Implementing a Mobile Campus Using MLE Moodle 2010 ,		6	
127	The Big Picture, from Grids and Clouds to Crowds: A Data Collective Computational Intelligence Case Proposal for Managing Disasters 2010 ,		31	

126	Crowd-Sourcing and Data Mashups Challenges: A Mini Case Study for Assisting and Solving a Disaster Management Scenario 2010 ,	3
125	Customer Relationship Management applied to higher education: developing an e-monitoring system to improve relationships in electronic learning environments. <i>International Journal of Services, Technology and Management</i> , 2010 , 14, 103	16
124	Performance Evaluation of Wireless Sensor Networks for Mobile Sink Considering Consumed Energy Metric 2010 ,	13
123	An Intelligent Fuzzy-Based Cluster Head Selection System for Wireless Sensor Networks and Its Performance Evaluation 2010 ,	9
122	Genetic Algorithms for Efficient Placement of Router Nodes in Wireless Mesh Networks 2010,	31
121	Application of Genetic Algorithms for QoS Routing in Mobile Ad Hoc Networks: A Survey 2010 ,	4
120	Performance Evaluation of AODV, OLSR and DYMO Protocols for Vehicular Networks Using CAVENET 2010 ,	5
119	Using Bi-clustering Algorithm for Analyzing Online Users Activity in a Virtual Campus 2010 ,	5
118	A Game-Theoretic and Hybrid Genetic Meta-Heuristics Model for Security-Assured Scheduling of Independent Jobs in Computational Grids 2010 ,	3
117	Mobility Effects of Wireless Multi-hop Networks in Indoor Scenarios 2010 ,	1
116	Evaluation of a Fuzzy-Based CAC Scheme for Different Priorities in Wireless Cellular Networks 2010 ,	1
115	A Fuzzy-Based CAC Scheme for Wireless Cellular Networks Considering Different Priorities 2010 ,	4
114	Experimental Evaluation of a MANET Testbed in Indoor Stairs Scenarios 2010,	2
113	Improvement and Performance Evaluation of CAVENET: A Network Simulation Tool for Vehicular Networks 2010 ,	1
112	Grid and P2P Middleware for Scientific Computing Systems 2010 ,	2
111	Impact of Mobile Event Movement on the Performance of Wireless Sensor Networks 2010,	1
110	A Web Interface for Meta-Heuristics Based Grid Schedulers 2010 ,	1
109	Requirements for Distributed Event-Based Awareness in P2P Groupware Systems 2010 ,	21

(2009-2010)

108	Performance Evaluation and Comparison of Fuzzy-Based Intelligent CAC Systems for Wireless Cellular Networks 2010 ,		2
107	An Intelligent Fuzzy-Based Cluster Head Selection System for WSNs and Its Performance Evaluation for D3N Parameter 2010 ,		16
106	2010,		18
105	Performance evaluation of a fuzzy-based CAC scheme for wireless cellular networks: a case study considering priority of on-going connections. <i>International Journal of Business Intelligence and Data Mining</i> , 2010 , 5, 269	0.3	8
104	A parallel grid-based implementation for real-time processing of event log data of collaborative applications. <i>International Journal of Web and Grid Services</i> , 2010 , 6, 124	1.4	23
103	Computational models and heuristic methods for Grid scheduling problems. <i>Future Generation Computer Systems</i> , 2010 , 26, 608-621	7.5	201
102	Evaluation of genetic algorithms for mesh router nodes placement in wireless mesh networks. <i>Journal of Ambient Intelligence and Humanized Computing</i> , 2010 , 1, 271-282	3.7	14
101	Efficient peerGroup management in JXTA-Overlay P2P system for developing groupware tools. <i>Journal of Supercomputing</i> , 2010 , 53, 45-65	2.5	8
100	A Testbed for MANETs: Implementation, Experiences and Learned Lessons. <i>IEEE Systems Journal</i> , 2010 , 4, 243-252	4.3	5
99	CLPL: Providing software infrastructure for the systematic and effective construction of complex collaborative learning systems. <i>Journal of Systems and Software</i> , 2010 , 83, 2083-2097	3.3	10
98	Computational Intelligence Infrastructure in Support for Complex e-Learning Systems. <i>Studies in Computational Intelligence</i> , 2010 , 143-168	0.8	2
97	Agent-Supported Programming of Multicore Computing Systems. <i>Springer Optimization and Its Applications</i> , 2010 , 207-224	0.4	О
96	Secure and Task Abortion Aware GA-Based Hybrid Metaheuristics for Grid Scheduling 2010 , 526-535		1
95	Performance Analysis of OLSR Protocol for Wireless Sensor Networks and Comparison Evaluation with AODV Protocol 2009 ,		6
94	MixMobGen - A Realistic Mixed Traffic Mobility Generator for ad hoc Network Simulations 2009,		2
93	Performance Evaluation of a Wireless Sensor Network Considering Mobile Event 2009,		7
92	A Security-Aware Approach to JXTA-Overlay Primitives 2009 ,		2
91	Mobility Effects in Mobile Ad Hoc Networks 2009 ,		9

90	Ad Hoc and Neighborhood Search Methods for Placement of Mesh Routers in Wireless Mesh Networks 2009 ,		82
89	Jxta-Overlay: An interface for efficient peer selection in P2P JXTA-based systems. <i>Computer Standards and Interfaces</i> , 2009 , 31, 886-893	3.5	12
88	Evaluation of P2P multimedia clustering techniques in JXTA-Overlay. Multimedia Systems, 2009, 15, 28	3- 29 3	0
87	Performance Analysis of OLSR and BATMAN Protocols Considering Link Quality Parameter 2009,		39
86	Implementation of an E-learning System Using P2P, Web and Sensor Technologies 2009,		12
85	A Replication-Based Approach for the Improvement of the Online Learning Experience in Distributed Environments 2009 ,		1
84	Stimulation Effects of SmartBox for E-learning Using JXTA-Overlay P2P System 2009,		14
83	A Comparison Study of Two Fuzzy-Based Handover Systems for Avoiding Ping-Pong Effect in Wireless Cellular Networks 2009 ,		5
82	A Compendium of Heuristic Methods for Scheduling in Computational Grids. <i>Lecture Notes in Computer Science</i> , 2009 , 751-758	0.9	2
81	2009,		17
8 ₁	2009, Experimental Results and Evaluation of SmartBox Stimulation Device in a P2P E-learning System 2009,		17 9
	Experimental Results and Evaluation of SmartBox Stimulation Device in a P2P E-learning System		
80	Experimental Results and Evaluation of SmartBox Stimulation Device in a P2P E-learning System 2009,		9
8o 79	Experimental Results and Evaluation of SmartBox Stimulation Device in a P2P E-learning System 2009, A Security Framework for JXTA-Overlay 2009, A Fuzzy-Based Call Admission Control Scheme for Wireless Cellular Networks Considering Priority	0.5	9
80 79 78	Experimental Results and Evaluation of SmartBox Stimulation Device in a P2P E-learning System 2009, A Security Framework for JXTA-Overlay 2009, A Fuzzy-Based Call Admission Control Scheme for Wireless Cellular Networks Considering Priority of On-going Connections 2009, SAMOS: a model for monitoring students' and groups' activities in collaborative e-learning.	0.5	9 2 7
80 79 78 77	Experimental Results and Evaluation of SmartBox Stimulation Device in a P2P E-learning System 2009, A Security Framework for JXTA-Overlay 2009, A Fuzzy-Based Call Admission Control Scheme for Wireless Cellular Networks Considering Priority of On-going Connections 2009, SAMOS: a model for monitoring students' and groups' activities in collaborative e-learning. International Journal of Learning Technology, 2009, 4, 53 A data analysis model based on control charts to monitor online learning processes. International		9 2 7
80 79 78 77 76	Experimental Results and Evaluation of SmartBox Stimulation Device in a P2P E-learning System 2009, A Security Framework for JXTA-Overlay 2009, A Fuzzy-Based Call Admission Control Scheme for Wireless Cellular Networks Considering Priority of On-going Connections 2009, SAMOS: a model for monitoring students' and groups' activities in collaborative e-learning. International Journal of Learning Technology, 2009, 4, 53 A data analysis model based on control charts to monitor online learning processes. International Journal of Business Intelligence and Data Mining, 2009, 4, 159 Fostering collaborative knowledge building by the effective provision of knowledge about the	0.3	9 2 7 19

(2008-2009)

72	Analysis of ad-hoc networks connectivity considering shadowing radio model 2009,		6
71	Towards an Intelligent Environment for Programming Multi-core Computing Systems. <i>Lecture Notes in Computer Science</i> , 2009 , 141-151	0.9	12
70	A GA(TS) Hybrid Algorithm for Scheduling in Computational Grids. <i>Lecture Notes in Computer Science</i> , 2009 , 285-292	0.9	21
69	Hierarchic Genetic Scheduler Of Independent Jobs In Computational Grid Environment 2009,		2
68	Thread-Based Analysis of Patterns in VMT 2009 , 359-371		4
67	Combining Coding and Conversation Analysis of VMT Chats 2009 , 421-450		8
66	Meta-heuristics for Grid Scheduling Problems. Studies in Computational Intelligence, 2008, 1-37	0.8	34
65	Tuning Struggle Strategy in Genetic Algorithms for Scheduling in Computational Grids 2008,		25
64	A cluster head decision system for sensor networks using fuzzy logic and number of neighbor nodes 2008 ,		12
63	An Intelligent Handoff System for Wireless Cellular Networks Using Fuzzy Logic and Random Walk Model 2008 ,		5
62	Hybrid Performance Modeling and Prediction of Large-Scale Computing Systems 2008,		9
61	Routing Efficiency of AODV and DSR Protocols in Ad-Hoc Sensor Networks 2008,		2
60	Design and Implementation of a JXTA-Overlay P2P System and Smart Box Environment 2008,		1
59	A Simulation System for Routing Efficiency in Wireless Sensor-Actor Networks: A Case Study for Semi-automated Architecture 2008 ,		2
58	Extending JXTA Protocols for P2P File Sharing Systems 2008 ,		5
57	Scheduling in Multiprocessor System Using Genetic Algorithms 2008,		4
56	A Fuzzy-Based Handover System for Avoiding Ping-Pong Effect in Wireless Cellular Networks 2008,		14
55	2008,		4

54	Automatic Performance Model Transformation from UML to C++. <i>Parallel Processing</i> (ICPP), Workshop, Proceedings of the International Conference on, 2008 ,		1
53	Developing an Information System for Monitoring Student's Activity in Online Collaborative Learning 2008 ,		9
52	Design and evaluation of tabu search method for job scheduling in distributed environments. <i>Parallel and Distributed Processing Symposium (IPDPS), Proceedings of the International Conference on</i> , 2008 ,		10
51	Towards an automatic real-time assessment of online discussions in Computer-Supported Collaborative Learning practices 2008 ,		2
50	Extension and evaluation of JXTA protocols for supporting reliable P2P distributed computing. <i>International Journal of Web Information Systems</i> , 2008 , 4, 121-135	0.9	6
49	Implementation of a JXTA-based P2P e-learning system and its performance evaluation. <i>International Journal of Web Information Systems</i> , 2008 , 4, 352-371	0.9	4
48	Performance Evaluation of Two Fuzzy-Based Cluster Head Selection Systems for Wireless Sensor Networks. <i>Mobile Information Systems</i> , 2008 , 4, 297-312	1.4	37
47	New Functions for Stimulating Learners' Motivation in a Web-Based e-Learning System. <i>International Journal of Distance Education Technologies</i> , 2008 , 6, 34-49	1.1	6
46	WIT: A Wireless Integrated Traffic Model. <i>Mobile Information Systems</i> , 2008 , 4, 219-235	1.4	10
45	Efficient Batch Job Scheduling in Grids Using Cellular Memetic Algorithms. <i>Mathematical Modelling and Algorithms</i> , 2008 , 7, 217-236		33
45 44		0.8	33
	and Algorithms, 2008, 7, 217-236 Peer-to-Peer Neighbor Selection Using Single and Multi-objective Population-Based	0.8	
44	and Algorithms, 2008, 7, 217-236 Peer-to-Peer Neighbor Selection Using Single and Multi-objective Population-Based Meta-heuristics. Studies in Computational Intelligence, 2008, 323-340 A Generic Platform for the Systematic Construction of Knowledge-based Collaborative Learning	0.8	3
44	and Algorithms, 2008, 7, 217-236 Peer-to-Peer Neighbor Selection Using Single and Multi-objective Population-Based Meta-heuristics. Studies in Computational Intelligence, 2008, 323-340 A Generic Platform for the Systematic Construction of Knowledge-based Collaborative Learning Applications 2008, 219-242 Parallel approximation to high multiplicity scheduling problemsVIAsmooth multi-valued quadratic		3
44 43 42	Peer-to-Peer Neighbor Selection Using Single and Multi-objective Population-Based Meta-heuristics. Studies in Computational Intelligence, 2008, 323-340 A Generic Platform for the Systematic Construction of Knowledge-based Collaborative Learning Applications 2008, 219-242 Parallel approximation to high multiplicity scheduling problemsVIAsmooth multi-valued quadratic programming. RAIRO - Theoretical Informatics and Applications, 2008, 42, 237-252 Performance Evaluation of Two Search Space Reduction Methods for a Distributed Network	0.5	3
44 43 42 41	Peer-to-Peer Neighbor Selection Using Single and Multi-objective Population-Based Meta-heuristics. Studies in Computational Intelligence, 2008, 323-340 A Generic Platform for the Systematic Construction of Knowledge-based Collaborative Learning Applications 2008, 219-242 Parallel approximation to high multiplicity scheduling problemsVIAsmooth multi-valued quadratic programming. RAIRO - Theoretical Informatics and Applications, 2008, 42, 237-252 Performance Evaluation of Two Search Space Reduction Methods for a Distributed Network Architecture. Lecture Notes in Computer Science, 2008, 49-59 Efficient Batch Job Scheduling in Grids Using Cellular Memetic Algorithms. Studies in Computational	0.5	3 6
44 43 42 41 40	Peer-to-Peer Neighbor Selection Using Single and Multi-objective Population-Based Meta-heuristics. Studies in Computational Intelligence, 2008, 323-340 A Generic Platform for the Systematic Construction of Knowledge-based Collaborative Learning Applications 2008, 219-242 Parallel approximation to high multiplicity scheduling problems VIAs mooth multi-valued quadratic programming. RAIRO - Theoretical Informatics and Applications, 2008, 42, 237-252 Performance Evaluation of Two Search Space Reduction Methods for a Distributed Network Architecture. Lecture Notes in Computer Science, 2008, 49-59 Efficient Batch Job Scheduling in Grids Using Cellular Memetic Algorithms. Studies in Computational Intelligence, 2008, 273-299 Nature Inspired Meta-heuristics for Grid Scheduling: Single and Multi-objective Optimization	0.5	3 6 1 12

36	Supporting Effective Monitoring and Knowledge Building in Online Collaborative Learning Systems. Lecture Notes in Computer Science, 2008 , 205-214	0.9	4
35	Immediate Mode Scheduling of Independent Jobs in Computational Grids 2007,		14
34	Network energy consumption in ad-hoc networks under different radio models 2007,		1
33	A cluster head selection method for wireless sensor networks based on fuzzy logic 2007 ,		15
32	A Hybrid Evolutionary Heuristic for Job Scheduling on Computational Grids. <i>Studies in Computational Intelligence</i> , 2007 , 269-311	0.8	22
31	Immediate mode scheduling in grid systems. International Journal of Web and Grid Services, 2007, 3, 219	1.4	42
30	REQUIREMENTS FOR AN EVENT-BASED SIMULATION PACKAGE FOR GRID SYSTEMS. <i>Journal of Interconnection Networks</i> , 2007 , 08, 163-178	0.4	25
29	AN EXPERIMENTAL STUDY ON GENETIC ALGORITHMS FOR RESOURCE ALLOCATION ON GRID SYSTEMS. <i>Journal of Interconnection Networks</i> , 2007 , 08, 427-443	0.4	36
28	Batch mode scheduling in grid systems. International Journal of Web and Grid Services, 2007, 3, 19	1.4	63
27	M3PS: A JXTA-based Multi-platform P2P System and its Web Application Tools. <i>International Journal of Web Information Systems</i> , 2007 , 2, 187-196	0.9	38
26	On using partial orders for web application design. <i>International Journal of Web Information Systems</i> , 2007 , 3, 8-25	0.9	1
25	What's in the mix? Combining coding and conversation analysis to investigate chat-based problem solving. <i>Learning and Instruction</i> , 2007 , 17, 405-415	5.8	20
24	Efficient Batch Job Scheduling in Grids using Cellular Memetic Algorithms 2007,		10
23	A Fuzzy-Based Speed-Aware Handoff System for Wireless Cellular Networks 2007 , 513-522		
22	Efficient Embedding of Information and Knowledge into CSCL Applications 2007, 548-559		6
21	Enabling Efficient Real Time User Modeling in On-Line Campus. <i>Lecture Notes in Computer Science</i> , 2007 , 365-369	0.9	3
20	Improvement of JXTA Protocols for Supporting Reliable Distributed Applications in P2P Systems 2007 , 345-354		35
19	A Service-Oriented Platform for the Enhancement and Effectiveness of the Collaborative Learning Process in Distributed Environments 2007 , 1280-1287		7

18	Juxta-Cat 2006 ,		4
17	A layered framework for evaluating on-line collaborative learning interactions. <i>International Journal of Human Computer Studies</i> , 2006 , 64, 622-635	4.6	71
16	Efficient parallel LAN/WAN algorithms for optimization. The mallba project. <i>Parallel Computing</i> , 2006 , 32, 415-440	1	50
15	USE OF GENETIC ALGORITHMS FOR SCHEDULING JOBS IN LARGE SCALE GRID APPLICATIONS. <i>Technological and Economic Development of Economy</i> , 2006 , 12, 11-17	4.7	26
14	The approximability of non-Boolean satisfiability problems and restricted integer programming. <i>Theoretical Computer Science</i> , 2005 , 332, 123-139	1.1	5
13	Analyzing the Organization of Collaborative Math Problem-Solving in Online Chats Using Statistics and Conversation Analysis. <i>Lecture Notes in Computer Science</i> , 2005 , 271-283	0.9	8
12	A Grid-Aware Implementation for Providing Effective Feedback to On-Line Learning Groups. <i>Lecture Notes in Computer Science</i> , 2005 , 274-283	0.9	6
11	Using Parallelism in Experimenting and Fine Tuning of Parameters for Metaheuristics. <i>Lecture Notes in Computer Science</i> , 2004 , 429-432	0.9	1
10	An Integrated Approach for Analysing and Assessing the Performance of Virtual Learning Groups. <i>Lecture Notes in Computer Science</i> , 2004 , 289-304	0.9	17
9	A Grid-Based Approach for Processing Group Activity Log Files. <i>Lecture Notes in Computer Science</i> , 2004 , 175-186	0.9	6
8	Exploring Interaction Behaviour and Performance of Online Collaborative Learning Teams. <i>Lecture Notes in Computer Science</i> , 2003 , 126-134	0.9	4
7	Approximating Scheduling Unrelated Parallel Machines in Parallel. <i>Computational Optimization and Applications</i> , 2002 , 21, 325-338	1.4	5
6	Parallel Skeletons for Tabu Search Method Based on Search Strategies and Neighborhood Partition. Lecture Notes in Computer Science, 2002 , 185-193	0.9	2
5	On the parallel approximability of a subclass of quadratic programming. <i>Theoretical Computer Science</i> , 2001 , 259, 217-231	1.1	1
4	On the Average Case Complexity of Some P-complete Problems. <i>RAIRO - Theoretical Informatics and Applications</i> , 1999 , 33, 33-45	0.5	
3	The (parallel) approximability of non-boolean satisfiability problems and restricted integer programming. <i>Lecture Notes in Computer Science</i> , 1998 , 488-498	0.9	8
2	On the depth of randomly generated circuits. Lecture Notes in Computer Science, 1996, 208-220	0.9	6
1			1