
Claude Murat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7509052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes. Science, 2012, 336, 1715-1719.	6.0	1,424
2	454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytologist, 2009, 184, 449-456.	3.5	908
3	Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 2015, 47, 410-415.	9.4	870
4	Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20117-20122.	3.3	717
5	Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature, 2010, 464, 1033-1038.	13.7	641
6	Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9166-9171.	3.3	640
7	The Plant Cell Wall–Decomposing Machinery Underlies the Functional Diversity of Forest Fungi. Science, 2011, 333, 762-765.	6.0	512
8	Endophytic Life Strategies Decoded by Genome and Transcriptome Analyses of the Mutualistic Root Symbiont Piriformospora indica. PLoS Pathogens, 2011, 7, e1002290.	2.1	361
9	Genome sequence of the button mushroom <i>Agaricus bisporus</i> reveals mechanisms governing adaptation to a humic-rich ecological niche. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17501-17506.	3.3	359
10	Unearthing the roots of ectomycorrhizal symbioses. Nature Reviews Microbiology, 2016, 14, 760-773.	13.6	317
11	Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environmental Microbiology Reports, 2010, 2, 281-288.	1.0	309
12	Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nature Communications, 2020, 11, 5125.	5.8	258
13	Insight into tradeâ€off between wood decay and parasitism from the genome of a fungal forest pathogen. New Phytologist, 2012, 194, 1001-1013.	3.5	210
14	Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytologist, 2018, 217, 1213-1229.	3.5	185
15	Truffles: much more than a prized and local fungal delicacy. FEMS Microbiology Letters, 2006, 260, 1-8.	0.7	177
16	Historical Biogeography and Diversification of Truffles in the Tuberaceae and Their Newly Identified Southern Hemisphere Sister Lineage. PLoS ONE, 2013, 8, e52765.	1.1	175
17	Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum. Nature Communications, 2016, 7, 12662.	5.8	156
18	Polymorphism at the ribosomal DNA ITS and its relation to postglacial reâ€colonization routes of the Perigord truffle Tuber melanosporum. New Phytologist, 2004, 164, 401-411.	3.5	153

#	Article	IF	CITATIONS
19	ITS-1 versus ITS-2 pyrosequencing: a comparison of fungal populations in truffle grounds. Mycologia, 2011, 103, 1184-1193.	0.8	135
20	Molecular phylogeny and historical biogeography of the genus <i>Tuber,</i> the †true truffles'. Journal of Biogeography, 2008, 35, 815-829.	1.4	117
21	Morphological and molecular typing of the below-ground fungal community in a natural Tuber magnatum truffle-ground. FEMS Microbiology Letters, 2005, 245, 307-313.	0.7	115
22	Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle. Nature Ecology and Evolution, 2018, 2, 1956-1965.	3.4	95
23	The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown. BMC Genomics, 2014, 15, 486.	1.2	91
24	Fineâ€scale spatial genetic structure of the black truffle (<i>Tuber melanosporum</i>) investigated with neutral microsatellites and functional mating type genes. New Phytologist, 2013, 199, 176-187.	3.5	83
25	454 Pyrosequencing Analysis of Fungal Assemblages from Geographically Distant, Disparate Soils Reveals Spatial Patterning and a Core Mycobiome. Diversity, 2013, 5, 73-98.	0.7	82
26	Gene expression in mycorrhizal orchid protocorms suggests a friendly plant–fungus relationship. Planta, 2014, 239, 1337-1349.	1.6	79
27	Forty years of inoculating seedlings with truffle fungi: past and future perspectives. Mycorrhiza, 2015, 25, 77-81.	1.3	71
28	Below-ground fine-scale distribution and soil versus fine root detection of fungal and soil oomycete communities in a French beech forest. Fungal Ecology, 2013, 6, 223-235.	0.7	69
29	Distribution and localization of microsatellites in the Perigord black truffle genome and identification of new molecular markers. Fungal Genetics and Biology, 2011, 48, 592-601.	0.9	67
30	Tuber magnatum Pico, a species of limited geographical distribution: its genetic diversity inside and outside a truffle ground. Environmental Microbiology, 2005, 7, 55-65.	1.8	63
31	Is the Perigord black truffle threatened by an invasive species? We dreaded it and it has happened!. New Phytologist, 2008, 178, 699-702.	3.5	63
32	Certainties and uncertainties about the life cycle of the Périgord black truffle (Tuber melanosporum) Tj ETQq0	0 0 rgBT /	Overlock 10 ⁻
33	Phylogenetic and populational study of the Tuber indicum complex. Mycological Research, 2006, 110, 1034-1045.	2.5	60
34	Soil analysis reveals the presence of an extended mycelial network in a Tuber magnatumâ€Âftruffle-ground. FEMS Microbiology Ecology, 2010, 71, 43-49.	1.3	52
35	Two ectomycorrhizal truffles, <i>Tuber melanosporum</i> and <i>T.Âaestivum</i> , endophytically colonise roots of nonâ€ectomycorrhizal plants in natural environments. New Phytologist, 2020, 225, 2542-2556.	3.5	50
36	Climatic variations explain annual fluctuations in French Périgord black truffle wholesale markets but do not explain the decrease in black truffle production over the last 48Âyears. Mycorrhiza, 2014, 24, 115-125.	1.3	47

#	Article	IF	CITATIONS
37	Survey and analysis of simple sequence repeats in the Laccaria bicolor genome, with development of microsatellite markers. Current Genetics, 2011, 57, 75-88.	0.8	38
38	Characterization of Transposable Elements in the Ectomycorrhizal Fungus Laccaria bicolor. PLoS ONE, 2012, 7, e40197.	1.1	38
39	Genome-wide survey of repetitive DNA elements in the button mushroom Agaricus bisporus. Fungal Genetics and Biology, 2013, 55, 6-21.	0.9	37
40	Fineâ€scale spatial genetic structure analysis of the black truffle <scp><i>T</i></scp> <i>uber aestivum</i> and its link to aroma variability. Environmental Microbiology, 2015, 17, 3039-3050.	1.8	36
41	Imaging mycorrhizal fungal transformants that express EGFP during ericoid endosymbiosis. Current Genetics, 2007, 52, 65-75.	0.8	35
42	Wild and cultivated mushrooms as a model of sustainable development. Plant Biosystems, 2013, 147, 226-236.	0.8	34
43	Five years investigation of female and male genotypes in périgord black truffle (<i>Tuber) Tj ETQq1 1 0.784314 Microbiology, 2017, 19, 2604-2615.</i>	4 rgBT /O [.] 1.8	verlock 10 T 33
44	Phylogenetic relationships betweenTuber pseudoexcavatum, a Chinese truffle, and otherTuberspecies based on parsimony and distance analysis of four different gene sequences. FEMS Microbiology Letters, 2006, 259, 269-281.	0.7	32
45	Cu,Zn superoxide dismutase and zinc stress in the metal-tolerant ericoid mycorrhizal fungus <i>Oidiodendron maius</i> Zn. FEMS Microbiology Letters, 2009, 293, 48-57.	0.7	31
46	Identification of Internal Transcribed Spacer Sequence Motifs in Truffles: a First Step toward Their DNA Bar Coding. Applied and Environmental Microbiology, 2007, 73, 5320-5330.	1.4	28
47	Fine-scale genetic structure of natural Tuber aestivum sites in southern Germany. Mycorrhiza, 2016, 26, 895-907.	1.3	27
48	Fungal Diversity Is Not Determined by Mineral and Chemical Differences in Serpentine Substrates. PLoS ONE, 2012, 7, e44233.	1.1	27
49	New Insights into the Complex Relationship between Weight and Maturity of Burgundy Truffles (Tuber) Tj ETQq1	10,7843 1.1	314.rgBT /Ov
50	PCR primers specific for the genus <i>Tuber</i> reveal the presence of several truffle species in a truffle-ground. FEMS Microbiology Letters, 2009, 297, 67-72.	0.7	23
51	Phylogenetic affiliation of the desert truffles Picoa juniperi and Picoa lefebvrei. Antonie Van Leeuwenhoek, 2010, 98, 429-436.	0.7	20
52	Truffle Phylogenomics. Advances in Botanical Research, 2014, , 211-234.	0.5	20
53	Draft Genome Sequence of Tuber borchii Vittad., a Whitish Edible Truffle. Genome Announcements, 2018, 6, .	0.8	20
54	Influence of annual climatic variations, climate changes, and sociological factors on the production of the Périgord black truffle (Tuber melanosporum Vittad.) from 1903–1904 to 1988–1989 in the Vaucluse (France). Mycorrhiza, 2019, 29, 113-125.	1.3	20

#	Article	IF	CITATIONS
55	An improved method compatible with metagenomic analyses to extract genomic DNA from soils in <i>Tuber melanosporum</i> orchards. Journal of Applied Microbiology, 2013, 115, 163-170.	1.4	19
56	First production of Italian white truffle (Tuber magnatum Pico) ascocarps in an orchard outside its natural range distribution in France. Mycorrhiza, 2021, 31, 383-388.	1.3	19
57	Sex and truffles: first evidence of Perigord black truffle outcrosses. New Phytologist, 2008, 180, 260-263.	3.5	18
58	Beech roots are simultaneously colonized by multiple genets of the ectomycorrhizal fungus <i>Laccaria amethystina</i> clustered in two genetic groups. Molecular Ecology, 2012, 21, 2116-2129.	2.0	18
59	A survey of genomeâ€wide single nucleotide polymorphisms through genome resequencing in the Périgord black truffle (<i>Tuber melanosporum</i> Vittad.). Molecular Ecology Resources, 2015, 15, 1243-1255.	2.2	18
60	SSR-based identification of genetic groups within European populations of Tuber aestivum Vittad. Mycorrhiza, 2016, 26, 99-110.	1.3	17
61	Diversity and Structure of Fungal Communities in Neotropical Rainforest Soils: The Effect of Host Recurrence. Microbial Ecology, 2017, 73, 310-320.	1.4	17
62	Modulation of Plant and Fungal Gene Expression Upon Cd Exposure and Symbiosis in Ericoid Mycorrhizal Vaccinium myrtillus. Frontiers in Microbiology, 2020, 11, 341.	1.5	17
63	Trichocybe, a new genus for Clitocybe puberula (Agaricomycetes, Agaricales). Fungal Diversity, 2010, 42, 97-105.	4.7	16
64	First Identification of Polymorphic Microsatellite Markers in the Burgundy Truffle, Tuber aestivum (Tuberaceae). Applications in Plant Sciences, 2013, 1, 1200220.	0.8	16
65	Ascoma genotyping and mating type analyses of mycorrhizas and soil mycelia of Tuber borchii in a truffle orchard established by mycelial inoculated plants. Environmental Microbiology, 2020, 22, 964-975.	1.8	16
66	Specific regions in the Sod1 locus of the ericoid mycorrhizal fungus Oidiodendron maius from metal-enriched soils show a different sequence polymorphism. FEMS Microbiology Ecology, 2011, 75, 321-331.	1.3	15
67	The Black Truffles Tuber melanosporum and Tuber indicum. Soil Biology, 2016, , 19-32.	0.6	13
68	Soil temperature and hydric potential influences the monthly variations of soil Tuber aestivum DNA in a highly productive orchard. Scientific Reports, 2019, 9, 12964.	1.6	11
69	New insights into black truffle biology: discovery of the potential connecting structure between a Tuber aestivum ascocarp and its host root. Mycorrhiza, 2019, 29, 219-226.	1.3	9
70	Reconstructing the evolutionary history of gypsy retrotransposons in the Périgord black truffle (Tuber melanosporum Vittad.). Mycorrhiza, 2016, 26, 553-563.	1.3	7
71	Draft Genome Sequences of the Black Truffles Tuber brumale Vittad. and Tuber indicum Cook & Massee. Microbiology Resource Announcements, 2021, 10, .	0.3	7
72	Frequency of the two mating types in the soil under productive and non-productive trees in five French orchards of the Périgord black truffle (Tuber melanosporum Vittad.). Mycorrhiza, 2021, 31, 361-369.	1.3	7

#	Article	IF	CITATIONS
73	Genomic suppression subtractive hybridization as a tool to identify differences in mycorrhizal fungal genomes. FEMS Microbiology Letters, 2011, 318, 115-122.	0.7	6
74	Contrasting demographic histories revealed in two invasive populations of the dry rot fungus <i>Serpula lacrymans</i> . Molecular Ecology, 2021, 30, 2772-2789.	2.0	6
75	Correction for Morin et al., Genome sequence of the button mushroom <i>Agaricus bisporus</i> reveals mechanisms governing adaptation to a humic-rich ecological niche. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4146-4146.	3.3	4
76	Draft Genome Sequence of the Ectomycorrhizal Ascomycete <i>Sphaerosporella brunnea</i> . Microbiology Resource Announcements, 2019, 8, .	0.3	3
77	Truffle Genomics: Investigating an Early Diverging Lineage of Pezizomycotina. Soil Biology, 2016, , 137-149.	0.6	2
78	Identification and In Situ Distribution of a Fungal Gene Marker: The Mating Type Genes of the Black Truffle. Methods in Molecular Biology, 2016, 1399, 141-149.	0.4	1