Sadis Matalon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7507974/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Update on the Features and Measurements of Experimental Acute Lung Injury in Animals: An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, e1-e14.	1.4	82
2	Understanding COVID-19 susceptibility and presentation based on its underlying physiology. Physiological Reviews, 2022, 102, 1579-1585.	13.1	6
3	Halogen gas exposure: toxic effects on the parturient. Toxicology Mechanisms and Methods, 2021, 31, 272-287.	1.3	6
4	The chemokine CX3CL1/fractalkine regulates immunopathogenesis during fungal-associated allergic airway inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L393-L404.	1.3	9
5	Noninvasive Assessment of Right Ventricle Function and Pulmonary Artery Pressure Using Transthoracic Echocardiography in Women With Pre-Eclampsia: An Exploratory Study. Cureus, 2021, 13, e13419.	0.2	1
6	Chitinase 3-like-1 protects airway function despite promoting type 2 inflammation during fungal-associated allergic airway inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L615-L626.	1.3	7
7	<i>Physiological Reviews</i> : The past, the present, and the future. Physiological Reviews, 2021, 101, 733-738.	13.1	3
8	AICAR decreases acute lung injury by phosphorylating AMPK and upregulating heme oxygenase-1. European Respiratory Journal, 2021, 58, 2003694.	3.1	22
9	LPS decreases CFTR open probability and mucociliary transport through generation of reactive oxygen species. Redox Biology, 2021, 43, 101998.	3.9	14
10	Chlorine inhalation induces acute chest syndrome in humanized sickle cell mouse model and ameliorated by postexposure hemopexin. Redox Biology, 2021, 44, 102009.	3.9	5
11	Halogen-Induced Chemical Injury to the Mammalian Cardiopulmonary Systems. Physiology, 2021, 36, 272-291.	1.6	10
12	In celebration of the 100th anniversary of Physiological Reviews. Physiological Reviews, 2021, 101, 1981-1985.	13.1	0
13	Halogen exposure injury in the developing lung. Annals of the New York Academy of Sciences, 2020, 1480, 30-43.	1.8	6
14	SARS-CoV-2 may regulate cellular responses through depletion of specific host miRNAs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L444-L455.	1.3	60
15	Cyclosporine: an old weapon in the fight against Coronaviruses. European Respiratory Journal, 2020, 56, 2002484.	3.1	15
16	Heme attenuates beta-endorphin levels in leukocytes of HIV positive individuals with chronic widespread pain. Redox Biology, 2020, 36, 101684.	3.9	7
17	Reactive species generated by heme impair alveolar epithelial sodium channel function in acute respiratory distress syndrome. Redox Biology, 2020, 36, 101592.	3.9	21
18	Elevated Plasmin(ogen) as a Common Risk Factor for COVID-19 Susceptibility. Physiological Reviews, 2020, 100, 1065-1075.	13.1	308

#	Article	IF	CITATIONS
19	Hyaluronan and halogenâ€induced airway hyperresponsiveness and lung injury. Annals of the New York Academy of Sciences, 2020, 1479, 29-43.	1.8	8
20	Vascular permeability disruption explored in the proteomes of mouse lungs and human microvascular cells following acute bromine exposure. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L337-L359.	1.3	7
21	Vascular Endothelial Growth Factorâ€121 Administration Mitigates Halogen Inhalationâ€Induced Pulmonary Injury and Fetal Growth Restriction in Pregnant Mice. Journal of the American Heart Association, 2020, 9, e013238.	1.6	9
22	Upregulation of airway smooth muscle calcium-sensing receptor by low-molecular-weight hyaluronan. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L459-L471.	1.3	14
23	TREK-1 and TRAAK Are Principal K+ Channels at the Nodes of Ranvier for Rapid Action Potential Conduction on Mammalian Myelinated Afferent Nerves. Neuron, 2019, 104, 960-971.e7.	3.8	98
24	Phosgene inhalation causes hemolysis and acute lung injury. Toxicology Letters, 2019, 312, 204-213.	0.4	27
25	Role of fibroblast growth factor 23 and klotho cross talk in idiopathic pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L141-L154.	1.3	37
26	Resveratrol and ivacaftor are additive G551D CFTRâ€channel potentiators: therapeutic implications for cystic fibrosis sinus disease. International Forum of Allergy and Rhinology, 2019, 9, 100-105.	1.5	19
27	Impaired Tumor-Necrosis-Factor-α-driven Dendritic Cell Activation Limits Lipopolysaccharide-Induced Protection from Allergic Inflammation in Infants. Immunity, 2019, 50, 225-240.e4.	6.6	49
28	Bromine inhalation mimics ischemia-reperfusion cardiomyocyte injury and calpain activation in rats. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H212-H223.	1.5	22
29	IL-1RA regulates immunopathogenesis during fungal-associated allergic airway inflammation. JCI Insight, 2019, 4, .	2.3	21
30	AMPK Activation Improves Survivability after Toxic Gas Exposure. FASEB Journal, 2019, 33, 127.12.	0.2	0
31	Bromofatty aldehyde derived from bromine exposure and myeloperoxidase and eosinophil peroxidase modify GSH and protein. Journal of Lipid Research, 2018, 59, 696-705.	2.0	27
32	Acidic Mammalian Chitinase Negatively Affects Immune Responses during Acute and Chronic Aspergillus fumigatus Exposure. Infection and Immunity, 2018, 86, .	1.0	18
33	Exposure of neonatal mice to bromine impairs their alveolar development and lung function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L137-L143.	1.3	24
34	Halogen Inhalation-Induced Lung Injury and Acute Respiratory Distress Syndrome. Chinese Medical Journal, 2018, 131, 1214-1219.	0.9	17
35	Therapeutic Attenuation of the Epithelial Sodium Channel with a SPLUNC1-derived peptide in Airway Diseases. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L239-L242.	1.3	0
36	In the Shadow of Giants: Challenges and Opportunities for the New Editor of Physiological Reviews. Physiological Reviews, 2018, 98, 555-557.	13.1	3

#	Article	IF	CITATIONS
37	High molecular weight hyaluronan ameliorates allergic inflammation and airway hyperresponsiveness in the mouse. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L787-L798.	1.3	14
38	Instillation of hyaluronan reverses acid instillation injury to the mammalian blood gas barrier. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L808-L821.	1.3	20
39	Systematic reviews of the literature: a better way of addressing basic science controversies. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L439-L442.	1.3	16
40	The common Î ³ -chain cytokine IL-7 promotes immunopathogenesis during fungal asthma. Mucosal Immunology, 2018, 11, 1352-1362.	2.7	20
41	Heme scavenging reduces pulmonary endoplasmic reticulum stress, fibrosis, and emphysema. JCI Insight, 2018, 3, .	2.3	47
42	Influenza-mediated reduction of lung epithelial ion channel activity leads to dysregulated pulmonary fluid homeostasis. JCI Insight, 2018, 3, .	2.3	50
43	Bromine Exposure In Pregnant Mice May Reduce VEGF Signaling Via Increased Circulating VEGF Decoy Receptor sFltâ€1. FASEB Journal, 2018, 32, 729.2.	0.2	0
44	Nitrite therapy prevents chlorine gas toxicity in rabbits. Toxicology Letters, 2017, 271, 20-25.	0.4	26
45	Measuring nitrate reductase activity from human and rodent tongues. Nitric Oxide - Biology and Chemistry, 2017, 66, 62-70.	1.2	19
46	An Official American Thoracic Society Workshop Report: Chemical Inhalational Disasters. Biology of Lung Injury, Development of Novel Therapeutics, and Medical Preparedness. Annals of the American Thoracic Society, 2017, 14, 1060-1072.	1.5	37
47	A novel role for primary cilia in airway remodeling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L328-L338.	1.3	5
48	Mechanisms and Treatment of Halogen Inhalation–Induced Pulmonary and Systemic Injuries in Pregnant Mice. Hypertension, 2017, 70, 390-400.	1.3	23
49	Ion channels of the lung and their role in disease pathogenesis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L859-L872.	1.3	68
50	Influenza virus infection alters ion channel function of airway and alveolar cells: mechanisms and physiological sequelae. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L845-L858.	1.3	44
51	Chlorineâ€induced cardiopulmonary injury. Annals of the New York Academy of Sciences, 2016, 1374, 159-167.	1.8	35
52	Role of heme in bromineâ€induced lung injury. Annals of the New York Academy of Sciences, 2016, 1374, 105-110.	1.8	32
53	Codon bias and the folding dynamics of the cystic fibrosis transmembrane conductance regulator. Cellular and Molecular Biology Letters, 2016, 21, 23.	2.7	32
54	Formation of chlorinated lipids post-chlorine gas exposure. Journal of Lipid Research, 2016, 57, 1529-1540.	2.0	49

#	Article	IF	CITATIONS
55	Heme Attenuation Ameliorates Irritant Gas Inhalation-Induced Acute Lung Injury. Antioxidants and Redox Signaling, 2016, 24, 99-112.	2.5	55
56	MicroRNA-27a-3p Is a Negative Regulator of Lung Fibrosis by Targeting Myofibroblast Differentiation. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 843-852.	1.4	68
57	A synonymous codon change alters the drug sensitivity of ΔF508 cystic fibrosis transmembrane conductance regulator. FASEB Journal, 2016, 30, 201-213.	0.2	13
58	Mechanistic Approaches to Improve Correction of the Most Common Disease-Causing Mutation in Cystic Fibrosis. PLoS ONE, 2016, 11, e0155882.	1.1	12
59	Role of epithelial sodium channels in the regulation of lung fluid homeostasis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1229-L1238.	1.3	108
60	Chlorine inhalation-induced myocardial depression and failure. Physiological Reports, 2015, 3, e12439.	0.7	32
61	Heme oxygenase-1-mediated autophagy protects against pulmonary endothelial cell death and development of emphysema in cadmium-treated mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L280-L292.	1.3	62
62	Hyaluronan mediates airway hyperresponsiveness in oxidative lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L891-L903.	1.3	59
63	Upregulation of autophagy decreases chlorine-induced mitochondrial injury and lung inflammation. Free Radical Biology and Medicine, 2015, 85, 83-94.	1.3	51
64	Influenza virus M2 targets cystic fibrosis transmembrane conductance regulator for lysosomal degradation during viral infection. FASEB Journal, 2015, 29, 2712-2725.	0.2	45
65	Respiratory syncytial virus infection increases chlorine-induced airway hyperresponsiveness. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L205-L210.	1.3	17
66	Inhaled matters of the Heart. Cardiovascular Regenerative Medicine, 2015, 2, .	1.7	10
67	TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L158-L172.	1.3	167
68	Nitrite therapy improves survival postexposure to chlorine gas. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L888-L894.	1.3	19
69	Postexposure aerosolized heparin reduces lung injury in chlorine-exposed mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L347-L354.	1.3	29
70	Inter-α-Inhibitor Blocks Epithelial Sodium Channel Activation and Decreases Nasal Potential Differences in ΔF508 Mice. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 953-962.	1.4	30
71	CFTR and lung homeostasis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L917-L923.	1.3	73
72	Rescuing ΔF508 CFTR with trimethylangelicin, a dual-acting corrector and potentiator. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L431-L434.	1.3	7

#	Article	IF	CITATIONS
73	A critical review of the American Journal of Physiology-Lung Cellular and Molecular Physiology: 2012–2015. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L911-L916.	1.3	4
74	Chlorine gas exposure disrupts nitric oxide homeostasis in the pulmonary vasculature. Toxicology, 2014, 321, 96-102.	2.0	18
75	Sinupret Activates CFTR and TMEM16A-Dependent Transepithelial Chloride Transport and Improves Indicators of Mucociliary Clearance. PLoS ONE, 2014, 9, e104090.	1.1	52
76	Aerosolized heparin mitigates chlorineâ€induced lung injury (1153.15). FASEB Journal, 2014, 28, 1153.15.	0.2	0
77	Chloride secretion across adult alveolar epithelial cells contributes to cardiogenic edema. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10055-10056.	3.3	10
78	Chlorine Induces the Unfolded Protein Response in Murine Lungs and Skin. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 197-203.	1.4	22
79	Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L582-L592.	1.3	36
80	Chlorine gas exposure increases susceptibility to invasive lung fungal infection. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L765-L773.	1.3	26
81	Chlorine Gas Exposure on Human Bronchial Cells Decreases Mitochondrial Quality and Activates Autophagy. FASEB Journal, 2013, 27, 919.5.	0.2	0
82	Regulation of Alveolar Epithelial Na ⁺ Channels by ERK1/2 in Chlorine-Breathing Mice. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 342-354.	1.4	45
83	Characterization of a novel splice variant of δENaC subunit in human lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L1262-L1272.	1.3	28
84	Post-Exposure Antioxidant Treatment in Rats Decreases Airway Hyperplasia and Hyperreactivity Due to Chlorine Inhalation. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 599-606.	1.4	39
85	δ ENaC: a novel divergent amiloride-inhibitable sodium channel. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L1013-L1026.	1.3	91
86	The role of CFTR in transepithelial liquid transport in pig alveolar epithelia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L489-L491.	1.3	8
87	Constrictive Bronchiolitis in Soldiers. New England Journal of Medicine, 2011, 365, 1743-1745.	13.9	8
88	Postexposure Administration of a β ₂ -Agonist Decreases Chlorine-Induced Airway Hyperreactivity in Mice. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 88-94.	1.4	56
89	Ascorbate and Deferoxamine Administration after Chlorine Exposure Decrease Mortality and Lung Injury in Mice. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 386-392.	1.4	60
90	Enhancement of alveolar epithelial sodium channel activity with decreased cystic fibrosis transmembrane conductance regulator expression in mouse lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L557-L567.	1.3	48

#	Article	IF	CITATIONS
91	Chlorine Gas Exposure Causes Systemic Endothelial Dysfunction by Inhibiting Endothelial Nitric Oxide Synthase–Dependent Signaling. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 419-425.	1.4	46
92	Inhibition of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) by Influenza M2 Proton Channel. FASEB Journal, 2011, 25, 1042.19.	0.2	0
93	Inhibition of ion transport across ATII cells by chlorine. FASEB Journal, 2011, 25, 1042.8.	0.2	0
94	Myeloperoxidase-dependent Inactivation of Surfactant Protein D in Vitro and in Vivo. Journal of Biological Chemistry, 2010, 285, 16757-16770.	1.6	29
95	Inhibition of Lung Fluid Clearance and Epithelial Na+ Channels by Chlorine, Hypochlorous Acid, and Chloramines. Journal of Biological Chemistry, 2010, 285, 9716-9728.	1.6	45
96	Elucidating mechanisms of chlorine toxicity: reaction kinetics, thermodynamics, and physiological implications. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L289-L300.	1.3	77
97	Mechanisms and Modification of Chlorine-induced Lung Injury in Animals. Proceedings of the American Thoracic Society, 2010, 7, 278-283.	3.5	77
98	Exposing Animals to Oxidant Gases: Nose Only vs. Whole Body. Proceedings of the American Thoracic Society, 2010, 7, 264-268.	3.5	27
99	Modification of surfactant protein D by reactive oxygenâ€nitrogen intermediates is accompanied by loss of aggregating activity, in vitro and in vivo. FASEB Journal, 2009, 23, 1415-1430.	0.2	57
100	Influenza virus M2 protein inhibits epithelial sodium channels by increasing reactive oxygen species. FASEB Journal, 2009, 23, 3829-3842.	0.2	84
101	Respiratory Syncytial Virus Inhibits Lung Epithelial Na+ Channels by Up-regulating Inducible Nitric-oxide Synthase. Journal of Biological Chemistry, 2009, 284, 7294-7306.	1.6	47
102	SARS-CoV proteins decrease levels and activity of human ENaC via activation of distinct PKC isoforms. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L372-L383.	1.3	57
103	Reactive species and pulmonary edema. Expert Review of Respiratory Medicine, 2009, 3, 487-496.	1.0	12
104	Inhibition of Na ⁺ Transport in Lung Epithelial Cells by Respiratory Syncytial Virus Infection. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 588-600.	1.4	50
105	α ₁ -Antitrypsin Inhibits Epithelial Na ⁺ Transport <i>In Vitro</i> and <i>In Vivo</i> . American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 261-270.	1.4	31
106	Influenza Exerts Continued Pressure in an Era of Modern Medicine. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 3-7.	1.4	10
107	Inhibition of ENaC activity by the Influenza Virus M2 proton channel. FASEB Journal, 2009, 23, .	0.2	0
108	Modulation of CFTR function by reactive oxygenâ€nitrogen species. FASEB Journal, 2009, 23, 999.2.	0.2	0

#	Article	IF	CITATIONS
109	Mitigation of chlorine-induced lung injury by low-molecular-weight antioxidants. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L733-L743.	1.3	92
110	DETANO and Nitrated Lipids Increase Chloride Secretion across Lung Airway Cells. American Journal of Respiratory Cell and Molecular Biology, 2008, 39, 150-162.	1.4	33
111	Enhanced cell-surface stability of rescued ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) by pharmacological chaperones. Biochemical Journal, 2008, 410, 555-564.	1.7	96
112	Post-Infection A77-1726 Blocks Pathophysiologic Sequelae of Respiratory Syncytial Virus Infection. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 379-386.	1.4	47
113	Modulation of alveolar fluid clearance by reactive oxygen-nitrogen intermediates. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L855-L858.	1.3	18
114	Diamide downâ€regulates human αβγ ENaC activity in <i>Xenopus</i> oocytes. FASEB Journal, 2007, 21, .	0.2	0
115	Leflunomide Prevents Alveolar Fluid Clearance Inhibition by Respiratory Syncytial Virus. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 673-682.	2.5	54
116	Mechanisms of Cystic Fibrosis Transmembrane Conductance Regulator Activation by S-Nitrosoglutathione. Journal of Biological Chemistry, 2006, 281, 9190-9199.	1.6	61
117	δ-Subunit Confers Novel Biophysical Features to αβγ-Human Epithelial Sodium Channel (ENaC) via a Physical Interaction. Journal of Biological Chemistry, 2006, 281, 8233-8241.	1.6	98
118	Surfactant Proteins and Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2004, 31, 585-586.	1.4	16
119	Nucleotide-mediated inhibition of alveolar fluid clearance in BALB/c mice after respiratory syncytial virus infection. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 286, L112-L120.	1.3	74
120	Regulation of ion channel structure and function by reactive oxygen-nitrogen species. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L1184-L1189.	1.3	78
121	Invited Review: Biophysical properties of sodium channels in lung alveolar epithelial cells. Journal of Applied Physiology, 2002, 93, 1852-1859.	1.2	119
122	Reactive Oxygen Nitrogen Species Decrease Cystic Fibrosis Transmembrane Conductance Regulator Expression and cAMP-mediated Clâ^' Secretion in Airway Epithelia. Journal of Biological Chemistry, 2002, 277, 43041-43049.	1.6	79
123	The role of nitric oxide in lung innate immunity: Modulation by surfactant protein-A. Molecular and Cellular Biochemistry, 2002, 234/235, 39-48.	1.4	12
124	Nitric Oxide and Nitrotyrosine in the Lungs of Patients with Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2001, 163, 503-510.	2.5	249
125	Chlorzoxazone or 1-EBIO increases Na ⁺ absorption across cystic fibrosis airway epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L1123-L1129.	1.3	23
126	Mechanisms of TNF-α stimulation of amiloride-sensitive sodium transport across alveolar epithelium. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L1258-L1265.	1.3	94

#	Article	IF	CITATIONS
127	Na,K-ATPase Gene Transfer Mitigates an Oxidant-Induced Decrease of Active Sodium Transport in Rat Fetal ATII Cells. American Journal of Respiratory Cell and Molecular Biology, 2001, 24, 245-252.	1.4	37
128	Protein Nitration, Metabolites of Reactive Nitrogen Species, and Inflammation in Lung Allografts. American Journal of Respiratory and Critical Care Medicine, 2000, 161, 2035-2042.	2.5	39
129	Nitric oxide inhibits heterologous CFTR expression in polarized epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L89-L96.	1.3	20
130	SODIUM CHANNELS IN ALVEOLAR EPITHELIAL CELLS: Molecular Characterization, Biophysical Properties, and Physiological Significance. Annual Review of Physiology, 1999, 61, 627-661.	5.6	314
131	Modulation of Rat Lung Na ⁺ ,K ⁺ -Atpase Gene Expression by Hyperoxia. Experimental Lung Research, 1998, 24, 173-188.	0.5	6
132	Nitric oxide inhibits Na ⁺ absorption across cultured alveolar type II monolayers. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 274, L369-L377.	1.3	100
133	cAMP activation of chloride and fluid secretion across the rabbit alveolar epithelium. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L1127-L1133.	1.3	48
134	Differential induction of c- <i>fos</i> , c- <i>jun</i> , and apoptosis in lung epithelial cells exposed to ROS or RNS. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1997, 273, L789-L796.	1.3	74
135	Inhibition of surfactant function by copper-zinc superoxide dismutase (CuZn-SOD). Journal of Applied Physiology, 1997, 83, 1545-1550.	1.2	10
136	Adult Alveolar Type II Cells Lack cAMP and Ca2+-Activated Clâ^'Channels. Biochemical and Biophysical Research Communications, 1996, 218, 302-308.	1.0	17
137	Sublethal Hyperoxic Injury to the Alveolar Epithelium and the Pulmonary Surfactant System. Experimental Lung Research, 1988, 14, 1021-1033.	0.5	36