
Baolin Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/750751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymer-matrix nanocomposite membranes for water treatment. Journal of Membrane Science, 2015, 479, 256-275.	4.1	880
2	Analysis of acidâ€volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environmental Toxicology and Chemistry, 1993, 12, 1441-1453.	2.2	483
3	Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination, 2016, 379, 93-101.	4.0	459
4	Preparation and Evaluation of GAC-Based Iron-Containing Adsorbents for Arsenic Removal. Environmental Science & Technology, 2005, 39, 3833-3843.	4.6	383
5	Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification. Journal of Membrane Science, 2012, 423-424, 238-246.	4.1	383
6	Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling. Journal of Membrane Science, 2013, 441, 73-82.	4.1	319
7	Removal of Aqueous Hg(II) by Polyaniline: Sorption Characteristics and Mechanisms. Environmental Science & Technology, 2009, 43, 5223-5228.	4.6	301
8	Role of sulfide and ligand strength in controlling nanosilver toxicity. Water Research, 2009, 43, 1879-1886.	5.3	278
9	Surface-Catalyzed Chromium(VI) Reduction:Â Reactivity Comparisons of Different Organic Reductants and Different Oxide Surfaces. Environmental Science & Technology, 1996, 30, 2484-2494.	4.6	270
10	Chromium(VI) Reduction by Hydrogen Sulfide in Aqueous Media:Â Stoichiometry and Kinetics. Environmental Science & Technology, 2001, 35, 2219-2225.	4.6	268
11	Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms. Water Research, 2016, 88, 403-427.	5.3	252
12	Metal-organic frameworks (MOFs) in water filtration membranes for desalination and other applications. Applied Materials Today, 2018, 11, 219-230.	2.3	196
13	Effects of Natural Organic Matter, Anthropogenic Surfactants, and Model Quinones on the Reduction of Contaminants by Zero-Valent Iron. Water Research, 2001, 35, 4435-4443.	5.3	192
14	Cr(VI) Removal from Aqueous Solution by Activated Carbon Coated with Quaternized Poly(4-vinylpyridine). Environmental Science & Technology, 2007, 41, 4748-4753.	4.6	185
15	Multi-walled carbon nanotubes (MWNTs)/polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment. Journal of Membrane Science, 2013, 437, 237-248.	4.1	173
16	Uranium(VI) Removal by Nanoscale Zerovalent Iron in Anoxic Batch Systems. Environmental Science & Technology, 2010, 44, 7783-7789.	4.6	140
17	Modifying activated carbon with hybrid ligands for enhancing aqueous mercury removal. Carbon, 2009, 47, 2014-2025.	5.4	138
18	Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications. Journal of Membrane Science, 2011, 375, 46-54.	4.1	135

#	Article	IF	CITATIONS
19	Kinetics of Uranium(VI) Reduction by Hydrogen Sulfide in Anoxic Aqueous Systems. Environmental Science & Technology, 2006, 40, 4666-4671.	4.6	127
20	Reductive Immobilization of Uranium(VI) by Amorphous Iron Sulfide. Environmental Science & Technology, 2008, 42, 8703-8708.	4.6	119
21	Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF). Journal of Membrane Science, 2009, 344, 71-81.	4.1	118
22	Surface-Catalyzed Chromium(VI) Reduction:Â The TiO2â^'CrVIâ^'Mandelic Acid System. Environmental Science & Technology, 1996, 30, 463-472.	4.6	116
23	Effects of Biomass Types and Carbonization Conditions on the Chemical Characteristics of Hydrochars. Journal of Agricultural and Food Chemistry, 2013, 61, 9401-9411.	2.4	115
24	Enhanced mercury ion adsorption by amine-modified activated carbon. Journal of Hazardous Materials, 2009, 166, 866-872.	6.5	101
25	Synthesis and evaluation of iron-containing ordered mesoporous carbon (FeOMC) for arsenic adsorption. Microporous and Mesoporous Materials, 2007, 102, 265-273.	2.2	100
26	Catalysis of Elemental Sulfur Nanoparticles on Chromium(VI) Reduction by Sulfide under Anaerobic Conditions. Environmental Science & Technology, 2005, 39, 2087-2094.	4.6	94
27	Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium. Geochimica Et Cosmochimica Acta, 2004, 68, 3251-3260.	1.6	93
28	Tailoring Polyamide Rejection Layer with Aqueous Carbonate Chemistry for Enhanced Membrane Separation: Mechanistic Insights, Chemistry-Structure-Property Relationship, and Environmental Implications. Environmental Science & Technology, 2019, 53, 9764-9770.	4.6	91
29	Chlorinated Ethene Reduction by Cast Iron: Sorption and Mass Transfer. Journal of Environmental Engineering, ASCE, 1998, 124, 1012-1019.	0.7	90
30	Photo-Oxidation of Cr(III)â^'Citrate Complexes Forms Harmful Cr(VI). Environmental Science & Technology, 2010, 44, 6959-6964.	4.6	89
31	Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling. Applied Surface Science, 2011, 257, 9863-9871.	3.1	89
32	Reduction of Vinyl Chloride in Metallic Ironâ^'Water Systems. Environmental Science & Technology, 1999, 33, 2651-2656.	4.6	88
33	Application of nano TiO2 modified hollow fiber membranes in algal membrane bioreactors for high-density algae cultivation and wastewater polishing. Bioresource Technology, 2015, 193, 135-141.	4.8	86
34	As(III) removal using an iron-impregnated chitosan sorbent. Journal of Hazardous Materials, 2010, 182, 156-161.	6.5	85
35	Thin Film Nanocomposite Membrane Filled with Metal-Organic Frameworks UiO-66 and MIL-125 Nanoparticles for Water Desalination. Membranes, 2017, 7, 31.	1.4	85
36	Adsorption of Aqueous Hg(II) by Sulfur-Impregnated Activated Carbon. Environmental Engineering Science, 2009, 26, 1693-1699.	0.8	79

#	Article	IF	CITATIONS
37	Hydrocarbon Formation in Metallic Iron/Water Systems. Environmental Science & Technology, 1997, 31, 1185-1190.	4.6	77
38	Rejection and modeling of arsenate by nanofiltration: Contributions of convection, diffusion and electromigration to arsenic transport. Journal of Membrane Science, 2014, 453, 42-51.	4.1	67
39	Catalysis of Manganese(II) on Chromium(VI) Reduction by Citrate. Pedosphere, 2007, 17, 318-323.	2.1	65
40	Toxicity of carbon nanotubes to freshwater aquatic invertebrates. Environmental Toxicology and Chemistry, 2012, 31, 1823-1830.	2.2	63
41	DOM removal by flocculation process: Fluorescence excitation–emission matrix spectroscopy (EEMs) characterization. Desalination, 2014, 346, 38-45.	4.0	62
42	Arsenate removal by reactive mixed matrix PVDF hollow fiber membranes with UIO-66 metal organic frameworks. Chemical Engineering Journal, 2020, 382, 122921.	6.6	57
43	Use of Iron-Containing Mesoporous Carbon (IMC) for Arsenic Removal from Drinking Water. Environmental Engineering Science, 2007, 24, 113-121.	0.8	54
44	Incorporation of Chromate into Calcium Carbonate Structure During Coprecipitation. Water, Air, and Soil Pollution, 2007, 179, 381-390.	1.1	53
45	Reducing arsenic accumulation in rice grain through iron oxide amendment. Ecotoxicology and Environmental Safety, 2015, 118, 55-61.	2.9	50
46	Parallel factor analysis of fluorescence EEM spectra to identify THM precursors in lake waters. Environmental Monitoring and Assessment, 2010, 161, 71-81.	1.3	46
47	Antibiotic enhanced dopamine polymerization for engineering antifouling and antimicrobial membranes. Chinese Chemical Letters, 2020, 31, 851-854.	4.8	46
48	Chromium(III) Oxidation Coupled with Microbially Mediated Mn(II) Oxidation. Geomicrobiology Journal, 2005, 22, 161-170.	1.0	45
49	Ligand-assisted degradation of carbon tetrachloride by microscale zero-valent iron. Journal of Environmental Management, 2011, 92, 1328-1333.	3.8	43
50	Influences of Water Vapor on Cr(VI) Reduction by Gaseous Hydrogen Sulfide. Environmental Science & Technology, 2003, 37, 4771-4777.	4.6	41
51	Ethylenediamine-modified activated carbon for aqueous lead adsorption. Environmental Chemistry Letters, 2010, 8, 277-282.	8.3	41
52	Thin film nanocomposite membranes filled with bentonite nanoparticles for brackish water desalination: A novel water uptake concept. Microporous and Mesoporous Materials, 2019, 279, 82-91.	2.2	41
53	Probing the Contributions of Interior and Exterior Channels of Nanofillers toward the Enhanced Separation Performance of a Thin-Film Nanocomposite Reverse Osmosis Membrane. Environmental Science and Technology Letters, 2020, 7, 766-772.	3.9	41
54	Kinetics of tetrachloroethyleneâ€reductive dechlorination catalyzed by vitamin B ₁₂ . Environmental Toxicology and Chemistry, 1998, 17, 1681-1688.	2.2	40

#	Article	lF	CITATIONS
55	Water-source characterization and classification with fluorescence EEM spectroscopy: PARAFAC analysis. International Journal of Environmental Analytical Chemistry, 2007, 87, 135-147.	1.8	40
56	Catalysis of Dissolved and Adsorbed Iron in Soil Suspension for Chromium(VI) Reduction by Sulfide. Pedosphere, 2006, 16, 572-578.	2.1	39
57	Suppression of Pyrite Oxidation by Iron 8-Hydroxyquinoline. Archives of Environmental Contamination and Toxicology, 2002, 43, 168-174.	2.1	36
58	Effects of clay minerals on Cr(VI) reduction by organic compounds. Environmental Monitoring and Assessment, 2003, 84, 5-18.	1.3	36
59	A Thin Film Nanocomposite Membrane with MCM-41 Silica Nanoparticles for Brackish Water Purification. Membranes, 2016, 6, 50.	1.4	32
60	Kinetic study of hexavalent Cr(VI) reduction by hydrogen sulfide through goethite surface catalytic reaction. Geochemical Journal, 2007, 41, 397-405.	0.5	31
61	Arsenic Accumulation in Rice Grains: Effects of Cultivars and Water Management Practices. Environmental Engineering Science, 2011, 28, 591-596.	0.8	31
62	Inhibition Effect of Secondary Phosphate Mineral Precipitation on Uranium Release from Contaminated Sediments. Environmental Science & Technology, 2009, 43, 8344-8349.	4.6	30
63	Impacts of Goethite Particles on UV Disinfection of Drinking Water. Applied and Environmental Microbiology, 2005, 71, 4140-4143.	1.4	29
64	Fluorescence fingerprints to monitor total trihalomethanes and N-nitrosodimethylamine formation potentials in water. Environmental Chemistry Letters, 2007, 5, 73-77.	8.3	29
65	Synthesis of high-performance thin film composite (TFC) membranes by controlling the preparation conditions: Technical notes. Journal of Water Process Engineering, 2019, 30, 100542.	2.6	29
66	Influence of soil minerals on chromium(VI) reduction by sulfide under anoxic conditions. Geochemical Transactions, 2007, 8, 4.	1.8	28
67	Uranium(VI) reduction by nanoscale zero-valent iron in anoxic batch systems: The role of Fe(II) and Fe(III). Chemosphere, 2014, 117, 625-630.	4.2	28
68	Role of Cellulose Micro and Nano Crystals in Thin Film and Support Layer of Nanocomposite Membranes for Brackish Water Desalination. Membranes, 2019, 9, 101.	1.4	28
69	Arsenate adsorption on iron-impregnated ordered mesoporous carbon: Fast kinetics and mass transfer evaluation. Chemical Engineering Journal, 2019, 357, 463-472.	6.6	27
70	Arsenic sorption and redox transformation on iron-impregnated ordered mesoporous carbon. Applied Organometallic Chemistry, 2007, 21, 750-757.	1.7	22
71	Electrochemical removal and release of perchlorate using poly(aniline-co-o-aminophenol). Journal of Electroanalytical Chemistry, 2010, 641, 1-6.	1.9	22
72	Arsenic Rejection by Nanofiltration Membranes: Effect of Operating Parameters and Model Analysis. Environmental Engineering Science, 2014, 31, 496-506.	0.8	22

#	Article	IF	CITATIONS
73	Enhancing water flux of thin-film nanocomposite (TFN) membrane by incorporation of bimodal silica nanoparticles. AIMS Environmental Science, 2016, 3, 185-198.	0.7	22
74	Efficient water desalination using photo-responsive ZnO polyamide thin film nanocomposite membrane. Environmental Chemistry Letters, 2018, 16, 1469-1475.	8.3	21
75	Membrane fouling by clay suspensions during NF-like forward osmosis: Characterization via optical coherence tomography. Journal of Membrane Science, 2020, 602, 117965.	4.1	20
76	Integrated nanotechnology for synergism and degradation of fungicide SOPP using micro/nano-Ag ₃ PO ₄ . Inorganic Chemistry Frontiers, 2016, 3, 354-364.	3.0	19
77	Characterization of dissolved organic matter/nitrogen by fluorescence excitation-emission matrix spectroscopy and X-ray photoelectron spectroscopy for watershed management. Chemosphere, 2018, 201, 708-715.	4.2	19
78	Tuning the Biodegradability of Chitosan Membranes: Characterization and Conceptual Design. ACS Sustainable Chemistry and Engineering, 2020, 8, 14484-14492.	3.2	19
79	Electrospinning and in situ nitrogen doping of TiO2/PAN nanofibers with photocatalytic activation in visible lights. Materials Letters, 2012, 82, 102-104.	1.3	18
80	Selective hydrogenation of citral over supported Pt catalysts: insight into support effects. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	17
81	Modification of Polysulfone (PSF) Hollow Fiber Membrane (HFM) with Zwitterionic or Charged Polymers. Industrial & Engineering Chemistry Research, 2017, 56, 7576-7584.	1.8	17
82	Physicoâ€Chemical Processes. Water Environment Research, 2017, 89, 974-1028.	1.3	17
83	Effects of Polysulfone (PSf) Support Layer on the Performance of Thin-Film Composite (TFC) Membranes. Journal of Chemical and Process Engineering, 2013, , .	0.0	16
84	Toxicity of silicon carbide nanowires to sedimentâ€dwelling invertebrates in water or sediment exposures. Environmental Toxicology and Chemistry, 2011, 30, 981-987.	2.2	15
85	A versatile solar-powered vapor generating membrane for multi-media purification. Separation and Purification Technology, 2021, 260, 117952.	3.9	15
86	Seven-bore hollow fiber membrane (HFM) for ultrafiltration (UF). Chemical Engineering Research and Design, 2017, 128, 240-247.	2.7	14
87	Effects of membrane morphology on the rejection of oil droplets: Theoretical analysis based on network modeling. Journal of Membrane Science, 2019, 588, 117198.	4.1	14
88	Long-Term Risk Reduction of Lead-Contaminated Urban Soil by Phosphate Treatment. Environmental Engineering Science, 2009, 26, 1747-1754.	0.8	13
89	Enhanced arsenic removal from water by mass re-equilibrium: kinetics and performance evaluation in a binary-adsorbent system. Water Research, 2021, 190, 116676.	5.3	13
90	ANALYSIS OF ACID-VOLATILE SULFIDE (AVS) AND SIMULTANEOUSLY EXTRACTED METALS (SEM) FOR THE ESTIMATION OF POTENTIAL TOXICITY IN AQUATIC SEDIMENTS. Environmental Toxicology and Chemistry, 1993, 12, 1441.	2.2	13

#	Article	IF	CITATIONS
91	Trichloroethylene Reduction on Zero Valent Iron: Probing Reactive versus Nonreactive Sites. ACS Symposium Series, 2002, , 181-205.	0.5	12
92	Unraveling the filmâ€formation kinetics of interfacial polymerization via low coherence interferometry. AICHE Journal, 2020, 66, e16863.	1.8	12
93	Effects of the Substrate on Interfacial Polymerization: Tuning the Hydrophobicity via Polyelectrolyte Deposition. Membranes, 2020, 10, 259.	1.4	10
94	Physico-Chemical Processes. Water Environment Research, 2016, 88, 966-1000.	1.3	9
95	Reductive Immobilization of Hexavalent Chromium by Polysulfide-Reduced Lepidocrocite. Industrial & Engineering Chemistry Research, 2019, 58, 11920-11926.	1.8	9
96	Photocatalytic Polysulfone Hollow Fiber Membrane with Self-Cleaning and Antifouling Property for Water Treatment. Industrial & Engineering Chemistry Research, 2019, 58, 3339-3348.	1.8	8
97	Arsenic Removal by Activated Carbon-Based Materials. ACS Symposium Series, 2005, , 284-293.	0.5	7
98	Chemical composition of dissolved organic matter from various sources as characterized by solid-state NMR. Aquatic Sciences, 2015, 77, 595-607.	0.6	7
99	Omniphobic Polyvinylidene Fluoride Membrane Decorated with a ZnO Nano Sea Urchin Structure: Performance Against Surfactant-Wetting in Membrane Distillation. Industrial & Engineering Chemistry Research, 2022, 61, 2237-2244.	1.8	7
100	Physicochemical Processes. Water Environment Research, 2002, 74, 231-342.	1.3	6
101	Quaternized Poly(4-Vinylpyridine) Coated Activated Carbon: Diffusion Controlled Sorption of Chromium(VI). Journal of Environmental Engineering, ASCE, 2007, 133, 834-838.	0.7	5
102	Uranium Immobilization by Hydrogen Sulfide Gaseous Treatment under Vadose Zone Conditions. Vadose Zone Journal, 2007, 6, 149-157.	1.3	5
103	Enhanced Adsorption of Mercury(II) Ions from Aqueous Solution by Carbon-Based Adsorbents Containing Cl-, S- and N-functional Groups. Adsorption Science and Technology, 2008, 26, 815-826.	1.5	5
104	Response to Comment on "Reductive Immobilization of Uranium(VI) by Amorphous Iron Sulfide― Environmental Science & Technology, 2009, 43, 1237-1238.	4.6	5
105	Effect of NH3plasma on thin-film composite membrane: Relationship of membrane and plasma properties. Membrane Water Treatment, 2013, 4, 109-126.	0.5	5
106	Inhibition of FeS on Chromium(III) Oxidation by Biogenic Manganese Oxides. Environmental Engineering Science, 2006, 23, 552-560.	0.8	4
107	Groundwater Quality. Water Environment Research, 2011, 83, 1665-1682.	1.3	4
108	Experimental and Theoretical Assessment of the Lifetime of a Gaseousâ€Reduced Vadose Zone Permeable Reactive Barrier. Vadose Zone Journal, 2007, 6, 1050-1056.	1.3	4

#	Article	IF	CITATIONS
109	Groundwater Quality. Water Environment Research, 2010, 82, 1854-1874.	1.3	3
110	Physico-Chemical Processes. Water Environment Research, 2013, 85, 963-991.	1.3	3
111	Physicoâ€Chemical Processes. Water Environment Research, 2015, 87, 912-945.	1.3	3
112	Co-adsorption of Trichloroethylene and Arsenate by Iron-Impregnated Granular Activated Carbon. Water Environment Research, 2016, 88, 394-402.	1.3	3
113	Reductive Dechlorination of Chlorinated Solvents on Zerovalent Iron Surfaces. , 2002, , 139-159.		2
114	Uptake of Cesium (Cs+) by Building Materials in Aqueous Batch Systems. Journal of Environmental Engineering, ASCE, 2011, 137, 990-995.	0.7	2
115	Physico-Chemical Processes. Water Environment Research, 2014, 86, 992-1025.	1.3	2
116	Arsenic Removal from Drinking Water Using Clay Membranes. ACS Symposium Series, 2005, , 294-305.	0.5	1
117	Groundwater Quality. Water Environment Research, 2009, 81, 1975-1995.	1.3	1
118	Arsenic Removal by Membrane Processes: Modeling and Applications. , 2012, , 348-381.		1
119	Groundwater Quality. Water Environment Research, 2012, 84, 1625-1641.	1.3	1
120	Dialysis Pretreatment for Dissolved Organic Nitrogen Analysis in Freshwaters. Journal of Chemistry, 2015, 2015, 1-7.	0.9	1
121	Fe (III)/H2O2-like system for removal of azo dye from aqueous solution. Separation Science and Technology, 2015, , 150527095459001.	1.3	1
122	<1>In situ 1 transformation of labile lead compounds to pyromorphites. Land Contamination and Reclamation, 2007, 15, 453-458.	0.4	1
123	Photocatalytic degradation of methyl orange by chitosan/CdS nanoparticle composite films. , 0, 60, 242-248.		1
124	Radioactive Wastes. Water Environment Research, 2004, 76, 1967-2024.	1.3	0
125	Radioactive Wastes. Water Environment Research, 2005, 77, 2244-2298.	1.3	0
126	Radioactive Wastes. Water Environment Research, 2006, 78, 1856-1882.	1.3	0

#	Article	IF	CITATIONS
127	Radioactive Wastes. Water Environment Research, 2007, 79, 1903-1928.	1.3	0
128	Groundwater Quality. Water Environment Research, 2008, 80, 1804-1826.	1.3	0
129	Adsorption of Aqueous Mercury by Amide-Functionalized Ordered Mesoporous Carbon. Asian Journal of Chemistry, 2016, 28, 2246-2254.	0.1	0
130	AEESP Journal Spotlight: Mid-2019. Environmental Engineering Science, 2019, 36, 760-760.	0.8	0
131	Antimicrobial Membrane. , 2014, , 1-3.		0
132	Antimicrobial Membrane. , 2016, , 86-88.		0
133	AEESP Spotlight: Late 2020. Environmental Engineering Science, 2020, 37, 715-716.	0.8	0
134	Physico-Chemical Processes. Water Environment Research, 2015, 87, 912-45.	1.3	0