Giovanni Manfredi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7507364/publications.pdf

Version: 2024-02-01

84 papers

5,038 citations

94433 37 h-index 98798 67 g-index

88 all docs 88 docs citations

88 times ranked 8521 citing authors

#	Article	IF	CITATIONS
1	Tau interactome maps synaptic and mitochondrial processes associated with neurodegeneration. Cell, 2022, 185, 712-728.e14.	28.9	114
2	Mutant CHCHD10 causes an extensive metabolic rewiring that precedes OXPHOS dysfunction in a murine model of mitochondrial cardiomyopathy. Cell Reports, 2022, 38, 110475.	6.4	11
3	S1P controls endothelial sphingolipid homeostasis via ORMDL. FASEB Journal, 2022, 36, .	0.5	O
4	Gene expression profiles in sporadic ALS fibroblasts define disease subtypes and the metabolic effects of the investigational drug EH301. Human Molecular Genetics, 2022, 31, 3458-3477.	2.9	5
5	Sterilization of Semiconductive Nanomaterials: The Case of Waterâ€Suspended Polyâ€3â€Hexylthiophene Nanoparticles. Advanced Healthcare Materials, 2021, 10, e2001306.	7.6	5
6	Modulation of the IGF1R-MTOR pathway attenuates motor neuron toxicity of human ALS SOD1 ^{G93A} astrocytes. Autophagy, 2021, 17, 4029-4042.	9.1	26
7	The physics of plasma membrane photostimulation. APL Materials, 2021, 9, 030901.	5.1	10
8	Photoelectrochemistry and Drift–Diffusion Simulations in a Polythiophene Film Interfaced with an Electrolyte. ACS Applied Materials & Samp; Interfaces, 2021, 13, 36595-36604.	8.0	9
9	Carbon Nitride Thin Films as All-In-One Technology for Photocatalysis. ACS Catalysis, 2021, 11, 11109-11116.	11.2	47
10	Doxycycline promotes proteasome fitness in the central nervous system. Scientific Reports, 2021, 11, 17003.	3.3	4
11	Raloxifene is a Female-specific Proteostasis Therapeutic in the Spinal Cord. Endocrinology, 2021, 162, .	2.8	5
12	Mouse midbrain dopaminergic neurons survive loss of the PD-associated mitochondrial protein CHCHD2. Human Molecular Genetics, 2021, , .	2.9	5
13	ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway. Autophagy, 2020, 16, 917-931.	9.1	118
14	Prohibitin levels regulate OMA1 activity and turnover in neurons. Cell Death and Differentiation, 2020, 27, 1896-1906.	11.2	41
15	Biocompatibility of a Conjugated Polymer Retinal Prosthesis in the Domestic Pig. Frontiers in Bioengineering and Biotechnology, 2020, 8, 579141.	4.1	10
16	Modulation of neuronal firing: what role can nanotechnology play?. Nanomedicine, 2020, 15, 2895-2900.	3.3	0
17	Distributed Bragg reflectors for the colorimetric detection of bacterial contaminants and pollutants for food quality control. APL Photonics, 2020, 5, 080901.	5.7	16
18	Accelerated transsulfuration metabolically defines a discrete subclass of amyotrophic lateral sclerosis patients. Neurobiology of Disease, 2020, 144, 105025.	4.4	12

#	Article	lF	Citations
19	Reshaping Hybrid Perovskites Emission with Flexible Polymer Microcavities. EPJ Web of Conferences, 2020, 230, 00006.	0.3	O
20	Prohibitin S-Nitrosylation Is Required for the Neuroprotective Effect of Nitric Oxide in Neuronal Cultures. Journal of Neuroscience, 2020, 40, 3142-3151.	3.6	14
21	Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy. Nature Nanotechnology, 2020, 15, 698-708.	31.5	129
22	A hybrid P3HT-Graphene interface for efficient photostimulation of neurons. Carbon, 2020, 162, 308-317.	10.3	31
23	Better understanding the neurobiology of primary lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 35-46.	1.7	3
24	Proteasome mapping reveals sexual dimorphism in tissueâ€specific sensitivity to protein aggregations. EMBO Reports, 2020, 21, e48978.	4.5	26
25	Enantiopure polythiophene nanoparticles. Chirality dependence of cellular uptake, intracellular distribution and antimicrobial activity. RSC Advances, 2019, 9, 23036-23044.	3.6	15
26	Photochemistry of Organic Retinal Prostheses. Annual Review of Physical Chemistry, 2019, 70, 99-121.	10.8	16
27	Lipid Deprivation Induces a Stable, Naive-to-Primed Intermediate State of Pluripotency in Human PSCs. Cell Stem Cell, 2019, 25, 120-136.e10.	11.1	98
28	Distal denervation in the SOD1 knockout mouse correlates with loss of mitochondria at the motor nerve terminal. Experimental Neurology, 2019, 318, 251-257.	4.1	7
29	Mitochondrial Transport and Turnover in the Pathogenesis of Amyotrophic Lateral Sclerosis. Biology, 2019, 8, 36.	2.8	30
30	Redox-Dependent Loss of Flavin by Mitochondrial Complex I in Brain Ischemia/Reperfusion Injury. Antioxidants and Redox Signaling, 2019, 31, 608-622.	5.4	48
31	Flory–Huggins Photonic Sensors for the Optical Assessment of Molecular Diffusion Coefficients in Polymers. ACS Applied Materials & District Sensors for the Optical Assessment of Molecular Diffusion Coefficients in Polymers. ACS Applied Materials & District Sensors for the Optical Assessment of Molecular Diffusion Coefficients in Polymers. ACS Applied Materials & District Sensors for the Optical Assessment of Molecular Diffusion Coefficients in Polymers. ACS Applied Materials & District Sensors for the Optical Assessment of Molecular Diffusion Coefficients in Polymers. ACS Applied Materials & District Sensors for the Optical Assessment of Molecular Diffusion Coefficients in Polymers. ACS Applied Materials & District Sensors for the Optical Assessment of Molecular Diffusion Coefficients in Polymers. ACS Applied Materials & District Sensors for the Optical Assessment of Molecular Diffusion Coefficients in Polymers. ACS Applied Materials & District Sensors for the Optical Assessment of Polymers. ACS Applied Materials & District Sensors for the Optical Assessment of Polymers. ACS Applied Materials & District Sensors for the Optical Assessment of Polymers. ACS Applied Materials & District Sensors for the Optical Assessment of Polymers. ACS Applied Materials & District Sensors for the Optical Assessment of Polymers. ACS Applied Materials & District Sensors for the Optical Assessment of Polymers for the	8.0	36
32	Sex Differences in Ischemia/Reperfusion Injury: The Role of Mitochondrial Permeability Transition. Neurochemical Research, 2019, 44, 2336-2345.	3.3	22
33	ALS/FTD mutant CHCHD10 mice reveal a tissue-specific toxic gain-of-function and mitochondrial stress response. Acta Neuropathologica, 2019, 138, 103-121.	7.7	71
34	All-polymer methylammonium lead iodide perovskite microcavities. Nanoscale, 2019, 11, 8978-8983.	5 . 6	30
35	The dependence of brain mitochondria reactive oxygen species production on oxygen level is linear, except when inhibited by antimycin A. Journal of Neurochemistry, 2019, 148, 731-745.	3.9	27
36	Deactivation of mitochondrial complex I after hypoxia–ischemia in the immature brain. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1790-1802.	4.3	24

3

#	Article	IF	Citations
37	Nrf2 signaling links ER oxidative protein folding and calcium homeostasis in health and disease. Life Science Alliance, 2019, 2, e201900563.	2.8	21
38	Lasing from dot-in-rod nanocrystals in planar polymer microcavities. RSC Advances, 2018, 8, 13026-13033.	3.6	28
39	Rewiring of Glutamine Metabolism Is a Bioenergetic Adaptation of Human Cells with Mitochondrial DNA Mutations. Cell Metabolism, 2018, 27, 1007-1025.e5.	16.2	135
40	Critical Role of Flavin and Glutathione in Complex I–Mediated Bioenergetic Failure in Brain Ischemia/Reperfusion Injury. Stroke, 2018, 49, 1223-1231.	2.0	61
41	Estrogen receptor beta modulates permeability transition in brain mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 423-433.	1.0	37
42	Neuronal expression of the mitochondrial protein prohibitin confers profound neuroprotection in a mouse model of focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1010-1020.	4.3	13
43	Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death and Differentiation, 2018, 25, 542-572.	11.2	120
44	Nutritional Interventions for Mitochondrial OXPHOS Deficiencies: Mechanisms and Model Systems. Annual Review of Pathology: Mechanisms of Disease, 2018, 13, 163-191.	22.4	22
45	IRE1α–XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature, 2018, 562, 423-428.	27.8	252
46	Prohibitin is a positive modulator of mitochondrial function in <scp>PC</scp> 12 cells under oxidative stress. Journal of Neurochemistry, 2018, 146, 235-250.	3.9	31
47	Colorimetric Detection of Perfluorinated Compounds by All-Polymer Photonic Transducers. ACS Omega, 2018, 3, 7517-7522.	3.5	31
48	Advances in Functional Solution Processed Planar 1D Photonic Crystals. Advanced Optical Materials, 2018, 6, 1800730.	7.3	145
49	Parkin is a disease modifier in the mutant <scp>SOD</scp> 1 mouse model of <scp>ALS</scp> . EMBO Molecular Medicine, 2018, 10, .	6.9	58
50	Mutant TDP-43 does not impair mitochondrial bioenergetics in vitro and in vivo. Molecular Neurodegeneration, 2017, 12, 37.	10.8	37
51	Directional Fluorescence Spectral Narrowing in All-Polymer Microcavities Doped with CdSe/CdS Dot-in-Rod Nanocrystals. ACS Photonics, 2017, 4, 1761-1769.	6.6	42
52	Sex specific activation of the ER $\hat{l}\pm$ axis of the mitochondrial UPR (UPRmt) in the G93A-SOD1 mouse model of familial ALS. Human Molecular Genetics, 2017, 26, 1318-1327.	2.9	62
53	Allâ€Polymer Photonic Microcavities Doped with Perylene Bisimide Jâ€Aggregates. Advanced Optical Materials, 2017, 5, 1700523.	7.3	51
54	Distinct intracellular sAC-cAMP domains regulate ER calcium signaling and OXPHOS function. Journal of Cell Science, 2017, 130, 3713-3727.	2.0	28

#	Article	IF	Citations
55	Proteinopathies and OXPHOS dysfunction in neurodegenerative diseases. Journal of Cell Biology, 2017, 216, 3917-3929.	5.2	59
56	The Mitochondrial Unfolded Protein Response as a Non-Oncogene Addiction to Support Adaptation to Stress during Transformation in Cancer and Beyond. Frontiers in Oncology, 2017, 7, 159.	2.8	24
57	Fibroblast bioenergetics to classify amyotrophic lateral sclerosis patients. Molecular Neurodegeneration, 2017, 12, 76.	10.8	49
58	Directional fluorescence shaping and lasing in all-polymer microcavities doped with CdSe/CdS dot-in-rod nanocrystals. , 2017, , .		1
59	High refractive index hyperbranched polyvinylsulfides for planar oneâ€dimensional allâ€polymer photonic crystals. Journal of Polymer Science, Part B. Polymer Physics, 2016, 54, 73-80.	2.1	41
60	Energy deficit in parvalbumin neurons leads to circuit dysfunction, impaired sensory gating and social disability. Neurobiology of Disease, 2016, 93, 35-46.	4.4	87
61	Cellulose ternary photonic crystal created by solution processing. Cellulose, 2016, 23, 2853-2862.	4.9	37
62	Discovery of LRE1 as a specific and allosteric inhibitor of soluble adenylyl cyclase. Nature Chemical Biology, 2016, 12, 838-844.	8.0	74
63	Alterations in voltage-sensing of the mitochondrial permeability transition pore in ANT1-deficient cells. Scientific Reports, 2016, 6, 26700.	3.3	33
64	Differential susceptibility of mitochondrial complex II to inhibition by oxaloacetate in brain and heart. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1561-1568.	1.0	47
65	In-plane anisotropic photoresponse in all-polymer planar microcavities. Polymer, 2016, 84, 383-390.	3.8	16
66	Mitochondrial iron chelation ameliorates cigarette smoke–induced bronchitis and emphysema in mice. Nature Medicine, 2016, 22, 163-174.	30.7	206
67	Mitochondria and endoplasmic reticulum crosstalk in amyotrophic lateral sclerosis. Neurobiology of Disease, 2016, 90, 35-42.	4.4	73
68	Polymer Distributed Bragg Reflectors for Vapor Sensing. ACS Photonics, 2015, 2, 537-543.	6.6	100
69	Spin-Coated Polymer and Hybrid Multilayers and Microcavities. , 2015, , 77-101.		7
70	Hybrid ZnO:polystyrene nanocomposite for allâ€polymer photonic crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 158-162.	0.8	30
71	Exploring new pathways of neurodegeneration in ALS: The role of mitochondria quality control. Brain Research, 2015, 1607, 36-46.	2.2	64
72	Proteolytic Cleavage of Opa1 Stimulates Mitochondrial Inner Membrane Fusion and Couples Fusion to Oxidative Phosphorylation. Cell Metabolism, 2014, 19, 630-641.	16.2	362

#	Article	IF	Citations
73	ROS-Triggered Phosphorylation of Complex II by Fgr Kinase Regulates Cellular Adaptation to Fuel Use. Cell Metabolism, 2014, 19, 1020-1033.	16.2	101
74	A mitochondrial CO ₂ â€adenylyl cyclase AMP signalosome controls yeast normoxic cytochrome <i>c</i> oxidase activity. FASEB Journal, 2014, 28, 4369-4380.	0.5	35
75	Role of soluble adenylyl cyclase in mitochondria. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2555-2560.	3.8	50
76	cAMP and Mitochondria. Physiology, 2013, 28, 199-209.	3.1	129
77	A Phosphodiesterase 2A Isoform Localized to Mitochondria Regulates Respiration. Journal of Biological Chemistry, 2011, 286, 30423-30432.	3.4	115
78	Modulation of mitochondrial protein phosphorylation by soluble adenylyl cyclase ameliorates cytochrome oxidase defects. EMBO Molecular Medicine, 2009, 1, 392-406.	6.9	97
79	Cyclic AMP Produced inside Mitochondria Regulates Oxidative Phosphorylation. Cell Metabolism, 2009, 9, 265-276.	16.2	422
80	Assay of Mitochondrial ATP Synthesis in Animal Cells and Tissues. Methods in Cell Biology, 2007, 80, 155-171.	1.1	97
81	Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. Mitochondrion, 2005, 5, 77-87.	3.4	196
82	BCL-2 Improves Oxidative Phosphorylation and Modulates Adenine Nucleotide Translocation in Mitochondria of Cells Harboring Mutant mtDNA. Journal of Biological Chemistry, 2003, 278, 5639-5645.	3.4	40
83	Measurements of ATP in mammalian cells. Methods, 2002, 26, 317-326.	3.8	205
84	Bcl-2 Suppresses Oxidative Phosphorylation Defects Caused by Mitochondrial DNA Mutations. Scientific World Journal, The, 2001, 1, 39-39.	2.1	2