Vadim Anatolievich Soloshonok

List of Publications by Year in Descending Order

 $\textbf{Source:} \ https://exaly.com/author-pdf/7507052/vadim-anatolievich-soloshonok-publications-by-year.pdf$

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

313 papers

16,588 citations

71 h-index 117 g-index

324 ext. papers

18,362 ext. citations

5.3 avg, IF

6.89 L-index

#	Paper	IF	Citations
313	Successful trifluoromethoxy-containing pharmaceuticals and agrochemicals. <i>Journal of Fluorine Chemistry</i> , 2022 , 257-258, 109978	2.1	1
312	Advances in the Development of Trifluoromethoxylation Reagents. Symmetry, 2021, 13, 2380	2.7	4
311	Aldol Addition-Cyclization Reaction Cascade on a Platform of Chiral Ni(II) Complex of Glycine Schiff Base. <i>Ukrainica Bioorganica Acta</i> , 2021 , 16, 3-9	0.3	
310	Recent Advances on the Halo- and Cyano-Trifluoromethylation of Alkenes and Alkynes. <i>Molecules</i> , 2021 , 26,	4.8	1
309	Tailor-Made Amino Acids in Pharmaceutical Industry: Synthetic Approaches to Aza-Tryptophan Derivatives <i>Chemistry - A European Journal</i> , 2021 , 27, 17510-17528	4.8	1
308	New pharmaceuticals approved by FDA in 2020: Small-molecule drugs derived from amino acids and related compounds. <i>Chirality</i> , 2021 , 34, 86	2.1	3
307	Chemical Aspects of Human and Environmental Overload with Fluorine. <i>Chemical Reviews</i> , 2021 , 121, 4678-4742	68.1	49
306	Flurbiprofen: A Study of the Behavior of the Scalemate by Chromatography, Sublimation, and NMR. <i>Symmetry</i> , 2021 , 13, 543	2.7	2
305	Stereoselective arylthiolation of dehydroalanine in the NiII coordination environment: the stereoinductor of choice. <i>Mendeleev Communications</i> , 2021 , 31, 337-340	1.9	
304	Fluorine-containing pharmaceuticals approved by the FDA in 2020: Synthesis and biological activity. <i>Chinese Chemical Letters</i> , 2021 ,	8.1	14
303	Recommended Tests for the Self-Disproportionation of Enantiomers (SDE) to Ensure Accurate Reporting of the Stereochemical Outcome of Enantioselective Reactions. <i>Molecules</i> , 2021 , 26,	4.8	7
302	Stereoselective arylthiolation of dehydroalanine in the NiII coordination environment: the stereoinductor of choice. <i>Mendeleev Communications</i> , 2021 , 31, 337-340	1.9	2
301	Asymmetric Synthesis of ⊕ifluorinated EAmino Sulfones through Detrifluoroacetylative Mannich Reactions. <i>European Journal of Organic Chemistry</i> , 2021 , 2021, 3035-3038	3.2	1
300	Asymmetric Synthesis of N-Fmoc-(S)-7-aza-tryptophan via Alkylation of Chiral Nucleophilic Glycine Equivalent. <i>European Journal of Organic Chemistry</i> , 2021 , 2021, 2962-2965	3.2	4
299	The Self-Disproportionation of Enantiomers (SDE): Fluorine as an SDE-Phoric Substituent 2021 , 281-30	06	
298	Electrochemical Approaches for Preparation of Tailor-Made Amino Acids. <i>Chinese Journal of Organic Chemistry</i> , 2021 , 41, 3034	3	3
297	Asymmetric synthesis of the two enantiomers of phosphorus-containing maino acids via hydrophosphinylation and hydrophosphonylation of chiral Ni(II)-complexes. <i>Organic Chemistry Frontiers</i> , 2021 , 8, 2190-2195	5.2	7

296	Comparative study of different chiral ligands for dynamic kinetic resolution of amino acids. <i>Chirality</i> , 2021 , 33, 685-702	2.1		
295	Tailor-made amino acids in the design of small-molecule blockbuster drugs. <i>European Journal of Medicinal Chemistry</i> , 2021 , 220, 113448	6.8	10	
294	Synthesis of Isothiazoles through -Propargylsulfinylamide: TFA-Promoted Sulfinyl Group-Involved Intramolecular Cyclization. <i>Organic Letters</i> , 2021 , 23, 6941-6945	6.2	1	
293	Asymmetric synthesis of (S)-3-methyleneglutamic acid and its N-Fmoc derivative via Michael addition-elimination reaction of chiral glycine Ni (II) complex with enol tosylates. <i>Chirality</i> , 2021 , 33, 115	5- 1 23	5	
292	Tailor-Made Amino Acids and Fluorinated Motifs as Prominent Traits in Modern Pharmaceuticals. <i>Chemistry - A European Journal</i> , 2020 , 26, 11349-11390	4.8	50	
291	The Ruthenium-Catalyzed Domino Cross Enyne Metathesis/Ring-Closing Metathesis in the Synthesis of Enantioenriched Nitrogen-Containing Heterocycles. <i>European Journal of Organic Chemistry</i> , 2020 , 2020, 4193-4207	3.2	4	
2 90	Solvent-triggered stereoselectivity of Ecyclopropanation of amino acids in the Ni(ii) chiral coordination environment. <i>Dalton Transactions</i> , 2020 , 49, 8636-8644	4.3	4	
289	Kitamura Electrophilic Fluorination Using HF as a Source of Fluorine. <i>Molecules</i> , 2020 , 25,	4.8	7	
288	Synthesis of Ahod Moiety of Ralstonin A Using Amino Acid Schiff Base Ni(II)-Complex Chemistry. Helvetica Chimica Acta, 2020 , 103, e2000077	2	10	
287	Asymmetric Synthesis of Tailor-Made Amino Acids Using Chiral Ni(II) Complexes of Schiff Bases. An Update of the Recent Literature. <i>Molecules</i> , 2020 , 25,	4.8	28	
286	Which Stereoinductor Is Better for Asymmetric Functionalization of ⊞Amino Acids in a Nickel(II) Coordination Environment? Experimental and DFT Considerations. <i>Chemistry - A European Journal</i> , 2020 , 26, 7074-7082	4.8	7	
285	Fluorine-containing drugs approved by the FDA in 2019. Chinese Chemical Letters, 2020, 31, 2401-2413	8.1	75	
284	Michael addition reactions of chiral glycine Schiff base Ni (II)-complex with 1-(1-phenylsulfonyl)benzene. <i>Chirality</i> , 2020 , 32, 885-893	2.1	7	
283	Large-Scale Synthesis of the Glycine Schiff Base Ni(II) Complex Derived from (S)- and (R)-N-(2-Benzoyl-4-chlorophenyl)-1-[(3,4-dichlorophenyl)methyl]-2-pyrrolidinecarboxamide. <i>Organic Process Research and Development</i> , 2020 , 24, 294-300	3.9	15	
282	Asymmetric Synthesis of Fluorinated Monoterpenic Alkaloid Derivatives from Chiral Fluoroalkyl Aldimines via the Pauson-Khand Reaction. <i>Advanced Synthesis and Catalysis</i> , 2020 , 362, 1378-1384	5.6	6	
281	Asymmetric Synthesis of 4,4-(Difluoro)glutamic Acid via Chiral Ni(II)-Complexes of Dehydroalanine Schiff Bases. Effect of the Chiral Ligands Structure on the Stereochemical Outcome. <i>ChemistryOpen</i> , 2020 , 9, 93-96	2.3	14	
2 80	Recent Developments in the Asymmetric Detrifluoroacetylative Reactions of in situ Generated Mono-Fluorinated Enolates. <i>Current Organic Chemistry</i> , 2020 , 24, 2181-2191	1.7	6	
279	Applications of fluorine-containing amino acids for drug design. <i>European Journal of Medicinal Chemistry</i> , 2020 , 186, 111826	6.8	88	

278	Cyclic tailor-made amino acids in the design of modern pharmaceuticals. <i>European Journal of Medicinal Chemistry</i> , 2020 , 208, 112736	6.8	20
277	Next generation organofluorine containing blockbuster drugs. <i>Journal of Fluorine Chemistry</i> , 2020 , 239, 109639	2.1	78
276	Electrophilic fluorination using PhIO/HFITHF reagent. <i>Journal of Fluorine Chemistry</i> , 2020 , 240, 109670	2.1	2
275	Asymmetric synthesis of (S)-{{octyl}}glycine via alkylation of Ni(II) complex of chiral glycine Schiff base. <i>Chirality</i> , 2020 , 32, 1354-1360	2.1	5
274	Potentially Mistaking Enantiomers for Different Compounds Due to the Self-Induced Diastereomeric Anisochronism (SIDA) Phenomenon. <i>Symmetry</i> , 2020 , 12, 1106	2.7	4
273	Asymmetric Mannich reactions of ()butylsulfinyl-3,3,3-trifluoroacetaldimines with yne nucleophiles. <i>Beilstein Journal of Organic Chemistry</i> , 2020 , 16, 2671-2678	2.5	2
272	Tailor-made amino acid-derived pharmaceuticals approved by the FDA in 2019. <i>Amino Acids</i> , 2020 , 52, 1227-1261	3.5	16
271	Frontispiece: Tailor-Made Amino Acids and Fluorinated Motifs as Prominent Traits in Modern Pharmaceuticals. <i>Chemistry - A European Journal</i> , 2020 , 26,	4.8	1
270	The self-disproportionation of enantiomers (SDE) via column chromatography of ⊞mino-⊞difluorophosphonic acid derivatives. <i>Amino Acids</i> , 2019 , 51, 1377-1385	3.5	10
269	Convenient synthesis of racemic 4,4-difluoro glutamic acid derivatives via Michael-type additions of Ni(II)-complex of dehydroalanine Schiff bases. <i>Journal of Fluorine Chemistry</i> , 2019 , 227, 109376	2.1	6
268	Perfluoro-3-ethyl-2,4-dimethyl-3-pentyl persistent radical: A new reagent for direct, metal-free radical trifluoromethylation and polymer initiation. <i>Journal of Fluorine Chemistry</i> , 2019 , 227, 109370	2.1	9
267	Chemistry of detrifluoroacetylatively in situ generated fluoro-enolates. <i>Organic and Biomolecular Chemistry</i> , 2019 , 17, 762-775	3.9	20
266	The self-disproportionation of enantiomers (SDE): The effect of scaling down, potential problems versus prospective applications, possible new occurrences, and unrealized opportunities?. <i>Electrophoresis</i> , 2019 , 40, 1869-1880	3.6	14
265	Chromatographic approach to study the configurational stability of Ni(II) complexes of amino-acid Schiff bases possessing stereogenic nitrogen. <i>Chirality</i> , 2019 , 31, 328-335	2.1	3
264	Large-Scale Asymmetric Synthesis of Fmoc-()-2-Amino-6,6,6-Trifluorohexanoic Acid. <i>ChemistryOpen</i> , 2019 , 8, 701-704	2.3	22
263	Asymmetric Vinylogous Mukaiyama-Mannich Reactions of Heterocyclic Siloxy Dienes with Ellman's Fluorinated Aldimines. <i>Advanced Synthesis and Catalysis</i> , 2019 , 361, 3860-3867	5.6	4
262	Mediator and Additive Free Trifluoromethyl-Fluorination of Terminal Alkenes by Persistent Perfluoroalkyl Radical. <i>European Journal of Organic Chemistry</i> , 2019 , 2019, 4417-4421	3.2	8
261	Chirality-dependent halogen bonds in axially chiral quinazolin-4-one derivatives bearing ortho-halophenyl groups. <i>CrystEngComm</i> , 2019 , 21, 3385-3389	3.3	3

260	Convenient Asymmetric Synthesis of Fmoc-(S)-6,6,6-Trifluoro-Norleucine. Symmetry, 2019 , 11, 578	2.7	23
259	Optical Resolution of Rimantadine. <i>Molecules</i> , 2019 , 24,	4.8	6
258	Fluorine-Containing Drugs Approved by the FDA in 2018. Chemistry - A European Journal, 2019, 25, 117	97 ₄ .818	3 19 13
257	The self-disproportionation of enantiomers (SDE) of amino acids and their derivatives. <i>Amino Acids</i> , 2019 , 51, 865-889	3.5	26
256	Effect of substituents on the configurational stability of the stereogenic nitrogen in metal(II) complexes of hamino acid Schiff bases. <i>Chirality</i> , 2019 , 31, 401-409	2.1	4
255	Practical Method for Preparation of ()-2-Amino-5,5,5-trifluoropentanoic Acid via Dynamic Kinetic Resolution. <i>ACS Omega</i> , 2019 , 4, 11844-11851	3.9	22
254	Development of Hamari Ligands for Practical Asymmetric Synthesis of Tailor-Made Amino Acids. <i>ACS Omega</i> , 2019 , 4, 18942-18947	3.9	24
253	Frontispiece: Fluorine-Containing Drugs Approved by the FDA in 2018. <i>Chemistry - A European Journal</i> , 2019 , 25,	4.8	1
252	Detrifluoroacetylative in Situ Generated Cyclic Fluorinated Enolates for the Preparation of Compounds Featuring a C-F Stereogenic Center. <i>ACS Omega</i> , 2019 , 4, 19505-19512	3.9	12
251	Preparative Method for Asymmetric Synthesis of ()-2-Amino-4,4,4-trifluorobutanoic Acid. <i>Molecules</i> , 2019 , 24,	4.8	8
250	Catalytic enantioselective Michael addition reactions between in situ detrifluoroacetylatively generated 3-fluorooxindole-derived enolates and 1-(1-(phenylsulfonyl)vinylsulfonyl)benzene. Journal of Fluorine Chemistry, 2019 , 219, 32-38	2.1	6
249	Fluorine-Containing Pharmaceuticals and the Phenomenon of the Self-Disproportionation of Enantiomers 2019 , 321-355		
248	Asymmetric synthesis of (2S,3S)-3-Me-glutamine and (R)-allo-threonine derivatives proper for solid-phase peptide coupling. <i>Amino Acids</i> , 2019 , 51, 419-432	3.5	7
247	Expedient Asymmetric Synthesis of (S)-2-Amino-4,4,4-trifluorobutanoic Acid via Alkylation of Chiral Nucleophilic Glycine Equivalent. <i>Organic Process Research and Development</i> , 2019 , 23, 629-634	3.9	24
246	Large Scale Synthesis of Chiral (3Z,5Z)-2,7-Dihydro-1H-azepine-Derived Hamari Ligand for General Asymmetric Synthesis of Tailor-Made Amino Acids. <i>Organic Process Research and Development</i> , 2019 , 23, 619-628	3.9	9
245	The self-disproportionation of enantiomers (SDE) of the mino acid derivatives: facets of steric and electronic properties. <i>Amino Acids</i> , 2019 , 51, 283-294	3.5	10
244	Palladium-Catalyzed Asymmetric Allylic Alkylations of Colby Pro-Enolates with MBH Carbonates: Enantioselective Access to Quaternary C-F Oxindoles. <i>Chemistry - A European Journal</i> , 2018 , 24, 8994-89	9 98 8	28
243	Configurationally Stable (S)- and (R)-EMethylproline-Derived Ligands for the Direct Chemical Resolution of Free Unprotected B-Amino Acids. <i>European Journal of Organic Chemistry</i> , 2018 , 2018, 1821-1832	3.2	11

242	Axially chiral Ni(II) complexes of the mino acids: Separation of enantiomers and kinetics of racemization. <i>Chirality</i> , 2018 , 30, 498-508	2.1	4
241	Chiral sulfoxides: advances in asymmetric synthesis and problems with the accurate determination of the stereochemical outcome. <i>Chemical Society Reviews</i> , 2018 , 47, 1307-1350	58.5	134
240	The self-disproportionation of enantiomers (SDE): a menace or an opportunity?. <i>Chemical Science</i> , 2018 , 9, 1718-1739	9.4	65
239	Modern Approaches for Asymmetric Construction of Carbon-Fluorine Quaternary Stereogenic Centers: Synthetic Challenges and Pharmaceutical Needs. <i>Chemical Reviews</i> , 2018 , 118, 3887-3964	68.1	316
238	Asymmetric Synthesis of Cyclic Fluorinated Amino Acids. <i>European Journal of Organic Chemistry</i> , 2018 , 2018, 3688-3692	3.2	25
237	Tandem Alkylation-Second-Order Asymmetric Transformation Protocol for the Preparation of Phenylalanine-Type Tailor-Made Amino Acids. <i>ACS Omega</i> , 2018 , 3, 9729-9737	3.9	12
236	Second-order asymmetric transformation and its application for the practical synthesis of hamino acids. <i>Organic and Biomolecular Chemistry</i> , 2018 , 16, 4968-4972	3.9	15
235	Asymmetric Vinylogous Mannich-Type Addition of Dicyanoalkenes to Fluoroalkyl Sulfinyl Imines. <i>Advanced Synthesis and Catalysis</i> , 2018 , 360, 366-373	5.6	10
234	Mannich-type addition of 1,3-dicarbonyl compounds to chiral tert-butanesulfinyltrifluoroacetaldimines. Mechanistic aspects and chiroptical studies. <i>Organic and Biomolecular Chemistry</i> , 2018 , 16, 8742-8750	3.9	9
233	Recent progress in the application of fluorinated chiral sulfinimine reagents. <i>Journal of Fluorine Chemistry</i> , 2018 , 216, 57-70	2.1	15
232	Internal chirality descriptors iR and iS and ire and isi. A proposed notation to extend the usefulness of the R/S system by retaining the sense of stereochemistry in cases of ligand ranking changes. <i>Chirality</i> , 2018 , 30, 1054-1066	2.1	3
231	Detrifluoroacetylative cascade reactions of bicyclic fluoro-enolates with ortho-phthalaldehyde: Aspects of reactivity, diastereo- and enantioselectivity. <i>Journal of Fluorine Chemistry</i> , 2017 , 196, 14-23	2.1	10
230	Asymmetric synthesis of CE quaternary Eluoro-Elmino-indolin-2-ones via Mannich addition reactions; facets of reactivity, structural generality and stereochemical outcome. <i>RSC Advances</i> , 2017 , 7, 5679-5683	3.7	22
229	Asymmetric Synthesis of Quaternary Perfluorophenyl-Amino-indolin-2-ones. <i>European Journal of Organic Chemistry</i> , 2017 , 2017, 1540-1546	3.2	17
228	Catalytic Enantioselective Cyano-Trifluoromethylation of Styrenes. <i>ChemistrySelect</i> , 2017 , 2, 1129-1132	1.8	16
227	Operationally Convenient and Scalable Asymmetric Synthesis of (2S)- and (2R)(Methyl)cysteine Derivatives through Alkylation of Chiral Alanine Schiff Base NiII Complexes. <i>European Journal of Organic Chemistry</i> , 2017 , 2017, 1931-1939	3.2	11
226	Analysis of crystallographic structures of Ni(ii) complexes of ⊞mino acid Schiff bases: elucidation of the substituent effect on stereochemical preferences. <i>Dalton Transactions</i> , 2017 , 46, 4191-4198	4.3	30
225	Design, Synthesis, and Evaluation of N-(tert-Butyl)-Alanine-Derived Chiral Ligands (Aspects of Reactivity and Diastereoselectivity in the Reactions with (Amino Acids. <i>European Journal of Organic Chemistry</i> , 2017 , 2017, 3211-3221	3.2	2

(2017-2017)

224	Solvent-free, uncatalyzed asymmetric "ene" reactions of N-tert-butylsulfinyl-3,3,3-trifluoroacetaldimines: a general approach to enantiomerically pure Etrifluoromethyl)tryptamines. <i>Organic and Biomolecular Chemistry</i> , 2017 , 15, 3930-3937	3.9	9	
223	Scale-up Synthesis of (R)- and (S)-N-(2-Benzoyl-4-chlorophenyl)-1-(3,4-dichlorobenzyl)pyrrolidine-2-carboxamide Hydrochloride, A Versatile Reagent for the Preparation of Tailor-Made Hand FAmino Acids in an Enantiomerically	3.9	28	
222	EAmino-Edifluoro-Ephosphonoglutamic Acid Derivatives: An Unexplored, Multifaceted Structural Type of Tailor-Made EAmino Acids. <i>European Journal of Organic Chemistry</i> , 2017 , 2017, 3451-3	3456	9	
221	Diastereoselective 🗗 Alkylation of Metallo Enamines Generated from N-C Axially Chiral Mebroqualone Derivatives. <i>Organic Letters</i> , 2017 , 19, 2650-2653	6.2	13	
220	Catalytic asymmetric aldol addition reactions of 3-fluoro-indolinone derived enolates. <i>Organic and Biomolecular Chemistry</i> , 2017 , 15, 311-315	3.9	22	
219	Catalytic Enantioselective Michael Addition Reactions of Tertiary Enolates Generated by Detrifluoroacetylation. <i>Chemistry - A European Journal</i> , 2017 , 23, 11221-11225	4.8	17	
218	Detrifluoroacetylative generation and chemistry of fluorine containing tertiary enolates. <i>Journal of Fluorine Chemistry</i> , 2017 , 198, 2-9	2.1	19	
217	Synthesis of chiral (tetrazolyl)methyl-containing acrylates via silicon-induced organocatalytic kinetic resolution of Morita-Baylis-Hillman fluorides. <i>Chemical Communications</i> , 2017 , 53, 1128-1131	5.8	14	
216	Diastereoselective Regiodivergent Mannich Versus Tandem Mannich-Cyclization Reactions. <i>Advanced Synthesis and Catalysis</i> , 2017 , 359, 4267-4273	5.6	13	
215	Biological evaluation of both enantiomers of fluoro-thalidomide using human myeloma cell line H929 and others. <i>PLoS ONE</i> , 2017 , 12, e0182152	3.7	14	
214	Self-disproportionation of enantiomers (SDE) of chiral sulfur-containing compounds via achiral chromatography. <i>Arkivoc</i> , 2017 , 2017, 557-578	0.9	14	
213	Asymmetric synthesis of Edeuterated Edmino acids. Organic and Biomolecular Chemistry, 2017, 15, 6978-	6 <u>9</u> .8 ₉ 3	19	
212	Possible Case of Halogen Bond-Driven Self-Disproportionation of Enantiomers (SDE) via Achiral Chromatography. <i>Chemistry - A European Journal</i> , 2017 , 23, 14631-14638	4.8	12	
211	Chemoselective S2' Allylations of Detrifluoroacetylatively In Situ Generated 3-Fluoroindolin-2-one-Derived Tertiary Enolates with Morita-Baylis-Hillman Carbonates. <i>Journal of Organic Chemistry</i> , 2017 , 82, 13663-13670	4.2	15	
210	A question of policy: should tests for the self-disproportionation of enantiomers (SDE) be mandatory for reports involving scalemates?. <i>Tetrahedron: Asymmetry</i> , 2017 , 28, 1430-1434		34	
209	Unusual reactivity of fluoro-enolates with dialkyl azodicarboxylates: Synthesis of isatin-hydrazones. Journal of Fluorine Chemistry, 2017 , 203, 99-103	2.1	8	
208	Recent approaches for asymmetric synthesis of ⊞mino acids via homologation of Ni(II) complexes. <i>Amino Acids</i> , 2017 , 49, 1487-1520	3.5	57	
207	Self-Disproportionation of Enantiomers (SDE) via achiral gravity-driven column chromatography of N -fluoroacyl-1-phenylethylamines. <i>Journal of Fluorine Chemistry</i> , 2017 , 196, 37-43	2.1	12	

206	The Second-generation of Highly Potent Hepatitis C Virus (HCV) NS3/4A Protease Inhibitors: Evolutionary Design Based on Tailor-made Amino Acids, Synthesis and Major Features of Bio-activity. <i>Current Pharmaceutical Design</i> , 2017 , 23, 4493-4554	3.3	23
205	N-tert-Butylsulfinyl-3,3,3-trifluoroacetaldimine: Versatile Reagent for Asymmetric Synthesis of Trifluoromethyl-Containing Amines and Amino Acids of Pharmaceutical Importance. <i>European Journal of Organic Chemistry</i> , 2016 , 2016, 5917-5932	3.2	45
204	Self-disproportionation of Enantiomers (SDE) of Chiral Nonracemic Amides via Achiral Chromatography. <i>Israel Journal of Chemistry</i> , 2016 , 56, 977-989	3.4	15
203	Detrifluoroacetylative in Situ Generation of Free 3-Fluoroindolin-2-one-Derived Tertiary Enolates: Design, Synthesis, and Assessment of Reactivity toward Asymmetric Mannich Reactions. <i>Organic Letters</i> , 2016 , 18, 3270-3	6.2	51
202	Tailor-Made Amino Acids in the Pharmaceutical Industry: Synthetic Approaches to (1R,2S)-1-Amino-2-vinylcyclopropane-1-carboxylic Acid (Vinyl-ACCA). <i>European Journal of Organic Chemistry</i> , 2016 , 2016, 2757-2774	3.2	59
201	Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II-III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. <i>Chemical Reviews</i> , 2016 , 116, 422-518	68.1	1457
200	Advanced asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid by alkylation/cyclization of newly designed axially chiral Ni(II) complex of glycine Schiff base. <i>Amino Acids</i> , 2016 , 48, 973-986	3.5	32
199	Chiral additive induced self-disproportionation of enantiomers under MPLC conditions: preparation of enantiomerically pure samples of 1-(aryl)ethylamines from racemates. <i>Tetrahedron: Asymmetry</i> , 2016 , 27, 317-321		13
198	Remarkable magnitude of the self-disproportionation of enantiomers (SDE) via achiral chromatography: application to the practical-scale enantiopurification of Emino acid esters. <i>Amino Acids</i> , 2016 , 48, 605-13	3.5	25
197	Organocatalytic Enantioselective Nucleophilic Alkynylation of Allyl Fluorides Affording Chiral Skipped Ene-ynes. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 6744-8	16.4	24
196	Catalytic cascade aldol-cyclization of tertiary ketone enolates for enantioselective synthesis of keto-esters with a C-F quaternary stereogenic center. <i>Organic and Biomolecular Chemistry</i> , 2016 , 14, 72	93-303	25
195	Asymmetric Synthesis of Aromatic and Heteroaromatic Amino Acids Using a Recyclable Axially Chiral Ligand. <i>European Journal of Organic Chemistry</i> , 2016 , 2016, 999-1006	3.2	18
194	Organocatalytic Enantioselective Nucleophilic Alkynylation of Allyl Fluorides Affording Chiral Skipped Ene-ynes. <i>Angewandte Chemie</i> , 2016 , 128, 6856-6860	3.6	6
193	Self-disproportionation of enantiomers via achiral gravity-driven column chromatography: A case study of N-acyl-phenylethylamines. <i>Journal of Chromatography A</i> , 2016 , 1467, 270-278	4.5	16
192	Purely Chemical Approach for Preparation of d-Amino Acids via (S)-to-(R)-Interconversion of Unprotected Tailor-Made Amino Acids. <i>Journal of Organic Chemistry</i> , 2016 , 81, 3501-8	4.2	27
191	New Chiral Reagent for Installation of Pharmacophoric (S)- or (R)-2-(Alkoxyphosphono)-1-amino-2,2-difluoroethyl Groups. <i>Chemistry - A European Journal</i> , 2016 , 22, 7036-40	4.8	23
190	Development and Evaluation of Different Methods for Preparation of Fluorine-Containing (R)- and (S)-N-tert-Butanesulfinylldimines. <i>ChemistrySelect</i> , 2016 , 1, 4435-4439	1.8	19
189	Small-Molecule Therapeutics for Ebola Virus (EBOV) Disease Treatment. <i>European Journal of Organic Chemistry</i> , 2016 , 2016, 8-16	3.2	30

(2015-2015)

188	Synthesis of trifluoromethyl-containing vicinal diamines by asymmetric decarboxylative mannich addition reactions. <i>Journal of Organic Chemistry</i> , 2015 , 80, 3187-94	4.2	36
187	Introducing a new radical trifluoromethylation reagent. <i>Chemical Communications</i> , 2015 , 51, 5967-70	5.8	24
186	Asymmetric synthesis of quaternary Efluoro-Eketo-amines via detrifluoroacetylative Mannich reactions. <i>Chemical Communications</i> , 2015 , 51, 9149-52	5.8	50
185	Assembly of Fluorinated Quaternary Stereogenic Centers through Catalytic Enantioselective Detrifluoroacetylative Aldol Reactions. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 6019-23	16.4	91
184	Ni-catalyzed asymmetric decarboxylative Mannich reaction for the synthesis of Etrifluoromethyl-Eamino ketones. <i>RSC Advances</i> , 2015 , 5, 26811-26814	3.7	18
183	Asymmetric Carbon t arbon Bond Formation under Solventless Conditions in Ball Mills. <i>ChemCatChem</i> , 2015 , 7, 1265-1269	5.2	42
182	Chemical Dynamic Thermodynamic Resolution and S/R Interconversion of Unprotected Unnatural Tailor-made Amino Acids. <i>Journal of Organic Chemistry</i> , 2015 , 80, 9817-30	4.2	30
181	Asymmetric synthesis of Etrifluoromethyl-Emino acids, including highly sterically constrained Edialkyl derivatives. <i>Tetrahedron</i> , 2015 , 71, 9550-9556	2.4	8
180	Asymmetric Synthesis of (2S,3S)(1-Oxoisoindolin-3-yl)glycines under Low-Basicity "Kinetic" Control. <i>Journal of Organic Chemistry</i> , 2015 , 80, 11275-80	4.2	13
179	Asymmetric synthesis of $\mathbb{H}(1-\infty)$ osoindolin-3-yl)glycine: synthetic and mechanistic challenges. <i>Chemical Communications</i> , 2015 , 51, 1624-6	5.8	28
178	A comprehensive examination of the self-disproportionation of enantiomers (SDE) of chiral amides via achiral, laboratory-routine, gravity-driven column chromatography. <i>RSC Advances</i> , 2015 , 5, 2988-299	33.7	42
177	Asymmetric synthesis of amino-benzothiazol derivatives by additions of 2-lithiated benzothiazoles to (S)-N-t-butylsulfinyl-ketimines. <i>RSC Advances</i> , 2015 , 5, 3491-3497	3.7	4
176	Asymmetric synthesis of (1R,2S)-1-amino-2-vinylcyclopropanecarboxylic acid by sequential SN2BN2? dialkylation of (R)-N-(benzyl)proline-derived glycine Schiff base Ni(II) complex. <i>RSC Advances</i> , 2015 , 5, 1051-1058	3.7	25
175	Synthesis of (2S,3S)-E(trifluoromethyl)-阻diamino acid by Mannich addition of glycine Schiff base Ni(II) complexes to N-tert-butylsulfinyl-3,3,3-trifluoroacetaldimine. <i>Journal of Fluorine Chemistry</i> , 2015 , 171, 67-72	2.1	41
174	Recyclable Ligands for the Non-Enzymatic Dynamic Kinetic Resolution of Challenging Amino Acids. <i>Angewandte Chemie</i> , 2015 , 127, 13110-13114	3.6	14
173	Generalized Approach to Asymmetric Synthesis of Ebubstituted EAmino Acids Bearing CHF2, CBrF2, and CClF2 Groups. <i>Asian Journal of Organic Chemistry</i> , 2015 , 4, 1020-1024	3	9
172	Recyclable Ligands for the Non-Enzymatic Dynamic Kinetic Resolution of Challenging Amino Acids. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 12918-22	16.4	57
171	Recent Progress in the in situ Detrifluorolacetylative Generation of Fluoro Enolates and Their Reactions with Electrophiles. <i>European Journal of Organic Chemistry</i> , 2015 , 2015, 6401-6412	3.2	57

170	Assembly of Fluorinated Quaternary Stereogenic Centers through Catalytic Enantioselective Detrifluoroacetylative Aldol Reactions. <i>Angewandte Chemie</i> , 2015 , 127, 6117-6121	3.6	22
169	Enantiomeric Enrichments via the Self-Disproportionation of Enantiomers (SDE) by Achiral, Gravity-Driven Column Chromatography: a Case Study Using N-(1-Phenylethyl)acetamide for Optimizing the Enantiomerically Pure Yield and Magnitude of the SDE. <i>Helvetica Chimica Acta</i> , 2015	2	24
168	Synthesis of Edifluoro-Edmino carbonyl-containing sulfonamides and related compounds. Journal of Fluorine Chemistry, 2015 , 172, 13-21	2.1	28
167	General asymmetric synthesis of 2,2,2-trifluoro-1-(1H-indol-3- and -2-yl)ethanamines. <i>Journal of Fluorine Chemistry</i> , 2015 , 170, 57-65	2.1	13
166	Mannich-Type Addition Reactions between Lithium Derivatives of Benzo[d]thiazoles and N-tert-Butylsulfinyl-3,3,3-trifluoroacetaldimine: Convenient Generalized Synthesis of Bis(benzothiazole)s. <i>European Journal of Organic Chemistry</i> , 2014 , 2014, 2429-2433	3.2	21
165	Concise Asymmetric Synthesis of Errifluoromethylated EDiamino Esters through Addition Reactions of Glycine Esters to CF3-Sulfinylimine. <i>European Journal of Organic Chemistry</i> , 2014 , 2014, 14	14 3 -145	51 ³⁴
164	Chiral N(H)-tBu and N(H)-Ad NiII Complexes of Glycine Schiff Bases: Deduction of a Mode of Kinetic Diastereoselectivity. <i>European Journal of Organic Chemistry</i> , 2014 , 2014, 4309-4314	3.2	9
163	Highly Stereoselective aza-BaylisHillman Reactions of CF3-Sulfinylimines: Straightforward Access to EMethylene ECF3 EAmino Acids. <i>European Journal of Organic Chemistry</i> , 2014 , 2014, 3072-3075	3.2	27
162	Asymmetric Mannich reaction between (S)-N-(tert-butanesulfinyl)-3,3,3-trifluoroacetaldimine and malonic acid derivatives. Stereodivergent synthesis of (R)- and (S)-3-amino-4,4,4-trifluorobutanoic acids. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 1454-62	3.9	36
161	LDA-promoted asymmetric synthesis of Etrifluoromethyl-Elamino indanone derivatives with virtually complete stereochemical outcome. <i>RSC Advances</i> , 2014 , 4, 4763-4768	3.7	47
160	NH-type of chiral Ni(II) complexes of glycine Schiff base: design, structural evaluation, reactivity and synthetic applications. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 1278-91	3.9	32
159	Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001-2011). <i>Chemical Reviews</i> , 2014 , 114, 2432-506	68.1	2974
158	Terminology Related to the Phenomenon Belf-Disproportionation of Enantiomers[(SDE). <i>Helvetica Chimica Acta</i> , 2014 , 97, 1583-1589	2	34
157	Recent advances in the trifluoromethylation methodology and new CF3-containing drugs. <i>Journal of Fluorine Chemistry</i> , 2014 , 167, 37-54	2.1	308
156	Operationally convenient method for preparation of sulfonamides containing Edifluoro-Eamino carbonyl moiety. <i>Tetrahedron Letters</i> , 2014 , 55, 5908-5910	2	42
155	Chemical dynamic kinetic resolution and S/R interconversion of unprotected hamino acids. Angewandte Chemie - International Edition, 2014, 53, 12214-7	16.4	70
154	Asymmetric Friedel-Crafts reactions of N-tert-butylsulfinyl-3,3,3-trifluoroacetaldimines: general access to enantiomerically pure indoles containing a 1-amino-2,2,2-trifluoroethyl group. <i>Journal of Organic Chemistry</i> , 2014 , 79, 7677-81	4.2	30
153	Generalized access to fluorinated Eketo amino compounds through asymmetric additions of Highluoroenolates to CF3-sulfinylimine. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 7836-43	3.9	54

Asymmetric synthesis of ե mino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations. <i>Amino Acids</i> , 2014 , 46, 2047-73	3.5	98
The self-disproportionation of the enantiomers (SDE) of methyl n-pentyl sulfoxide via achiral, gravity-driven column chromatography: a case study. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 473	38 2 :46	28
Concise and scalable asymmetric synthesis of 5-(1-amino-2,2,2-trifluoroethyl)thiazolo[3,2-b][1,2,4]triazoles. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 2108-13	3.9	38
Chemical kinetic resolution of unprotected Bubstituted Amino acids using recyclable chiral ligands. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7883-6	16.4	81
Asymmetric Synthesis of Amino Acids under Operationally Convenient Conditions. <i>Advanced Synthesis and Catalysis</i> , 2014 , 356, 2203-2208	5.6	36
Synthesis and stereochemical assignments of diastereomeric Ni(II) complexes of glycine Schiff base with (R)-2-(N-{2-[N-alkyl-N-(1-phenylethyl)amino]acetyl}amino)benzophenone; a case of configurationally stable stereogenic nitrogen. <i>Beilstein Journal of Organic Chemistry</i> , 2014 , 10, 442-8	2.5	12
Chemical Dynamic Kinetic Resolution and S/R Interconversion of Unprotected ⊞Amino Acids. <i>Angewandte Chemie</i> , 2014 , 126, 12410-12413	3.6	18
Chemical Kinetic Resolution of Unprotected Ebubstituted EAmino Acids Using Recyclable Chiral Ligands. <i>Angewandte Chemie</i> , 2014 , 126, 8017-8020	3.6	19
Design and synthesis of (S)- and (R)-(phenyl) ethylamine-derived NH-type ligands and their application for the chemical resolution of him ino acids. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 6239-49	3.9	11
Inexpensive chemical method for preparation of enantiomerically pure phenylalanine. <i>Amino Acids</i> , 2014 , 46, 945-52	3.5	11
Synthesis of fluorine-containing ⊞mino acids in enantiomerically pure form via homologation of Ni(II) complexes of glycine and alanine Schiff bases. <i>Journal of Fluorine Chemistry</i> , 2013 , 155, 21-38	2.1	107
Chiral initiator-induces self-disproportionation of enantiomers via achiral chromatography: application to enantiomer separation of racemate. <i>Tetrahedron Letters</i> , 2013 , 54, 5220-5223	2	20
Asymmetric synthesis of ⊞mino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations. <i>Amino Acids</i> , 2013 , 45, 691-718	3.5	126
Synthesis of polysubstituted Emino cyclohexane carboxylic acids via Diels-Alder reaction using Ni(II)-complex stabilized Ealanine derived dienes. <i>Amino Acids</i> , 2013 , 44, 791-6	3.5	7
Self-disproportionation of Enantiomers of Enantiomerically Enriched Compounds. <i>Topics in Current Chemistry</i> , 2013 , 341, 301-39		17
Asymmetric synthesis of ⊞mino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of ⊞mino acids. <i>Amino Acids</i> , 2013 , 45, 1017-33	3.5	115
Asymmetric Mannich reactions of imidazo[2,1-b]thiazole-derived nucleophiles with (S(S))-N-tert-butanesulfinyl (3,3,3)-trifluoroacetaldimine. <i>Organic and Biomolecular Chemistry</i> , 2013 , 11, 8018-21	3.9	48
Synthesis of bis-⊞amino acids through diastereoselective bis-alkylations of chiral Ni(II)-complexes of glycine. <i>Organic and Biomolecular Chemistry</i> , 2013 , 11, 4508-15	3.9	29
	Part 3: Michael addition reactions and miscellaneous transformations. <i>Amino Acids</i> , 2014, 46, 2047-73 The self-disproportionation of the enantiomers (SDE) of methyl n-pentyl sulfoxide via achiral, gravity-driven column chromatography: a case study. <i>Organic and Biomolecular Chemistry</i> , 2014, 12, 47:3 Concise and scalable asymmetric synthesis of 5-(1-amino-2,2-2-trifluoroethyl)thiazolo[3,2-b][1,2,4]triazoles. <i>Organic and Biomolecular Chemistry</i> , 2014, 12, 2108-13 Chemical kinetic resolution of unprotected Bubstituted Bmino acids using recyclable chiral ligands. <i>Angewandte Chemie - International Edition</i> , 2014, 53, 7883-6 Asymmetric Synthesis of BAmino Acids under Operationally Convenient Conditions. <i>Advanced Synthesis and Catalysis</i> , 2014, 356, 2203-2208 Synthesis and stereochemical assignments of diastereomeric Ni(II) complexes of glycine Schiff base with (R)-2-(N-[2-[N-alcyl-N-(1-phenylethyl)amino]acetylamino)benzophenone; a case of configurationally stable stereogenic nitrogen. <i>Belistein Journal of Organic Chemistry</i> , 2014, 10, 442-8 Chemical Dynamic Kinetic Resolution and S/R Interconversion of Unprotected Hamino Acids. <i>Angewandte Chemie</i> , 2014, 126, 12410-12413 Chemical Kinetic Resolution of Unprotected Isubstituted Bamino Acids Using Recyclable Chiral Ligands. <i>Angewandte Chemie</i> , 2014, 126, 8017-8020 Design and synthesis of (S)- and (R)-Ephenyl)ethylamine-derived NH-type ligands and their application for the chemical resolution of Hamino acids. <i>Organic and Biomolecular Chemistry</i> , 2014, 12, 6239-49 Inexpensive chemical method for preparation of enantiomerically pure phenylalanine. <i>Amino Acids</i> , 2014, 46, 945-52 Synthesis of fluorine-containing Bamino acids in enantiomerically pure form via homologation of Ni(II) complexes of glycine and alanine Schiff bases. <i>Journal of Fluorine Chemistry</i> , 2013, 155, 21-38 Chiral initiator-induces self-disproportionation of enantiomers via achiral chromatography: application to enantiomer separation of racemate. <i>Tetrahedron Letters</i> , 2013, 54, 5220-52	Part 3: Michael addition reactions and miscellaneous transformations. Amino Acids, 2014, 46, 2047-73 The self-disproportionation of the enantiomers (SDE) of methyl n-pentyl sulfoxide via achiral, gravity-driven column chromatography: a case study. Organic and Biomolecular Chemistry, 2014, 12, 4738-46 Concise and scalable asymmetric synthesis of Fit-amino-22,2-brifluoroethyl)thiazolo[3,2-b][1,2,4]triazoles. Organic and Biomolecular Chemistry, 2014, 12, 2108-13 Chemical kinetic resolution of unprotected Bubstituted Bamino acids using recyclable chiral ligands. Angewandte Chemie- International Edition, 2014, 53, 7883-6 Asymmetric Synthesis of Pamino Acids under Operationally Convenient Conditions. Advanced Synthesis and Catalysis, 2014, 356, 2203-2208 Synthesis and stereochemical assignments of diastereomeric Ni(II) complexes of glycine Schiff base with (R)-2-(N-12-N-alkyl-N-(1-phenylethyl)amino]acetyl/amino)benzophenone; a case of configurationally stable stereogenic nitrogen. Belister in Journal of Organic Chemistry, 2014, 10, 442-8 Chemical Dynamic Kinetic Resolution and S/R Interconversion of Unprotected Pamino Acids. Angewandte Chemie, 2014, 126, 12410-12413 Chemical Kinetic Resolution of Unprotected Bubstituted Bamino Acids Using Recyclable Chiral Ligands. Angewandte Chemie, 2014, 126, 8017-8020 Design and synthesis of (S)- and (R)-Highenyl)ethylamine-derived NH-type ligands and their application for the chemical resolution of Bimino acids. Organic and Biomolecular Chemistry, 2014, 12, 64, 945-52 Synthesis of Fluorine-containing Bamino acids in enantiomerically pure phenylalanine. Amino Acids, 2014, 46, 945-52 Synthesis of Fluorine-containing Bamino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations. Amino Acids, 2013, 45, 691-718 Synthesis of polysubstituted Bamino acids via homologation of Ni(III) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations. Amino Acids, 2013, 45, 1017-33 Asymmetric synthesis of Eminio acids via homologat

134	Unconventional preparation of racemic crystals of isopropyl 3,3,3-trifluoro-2-hydroxypropanoate and their unusual crystallographic structure: the ultimate preference for homochiral intermolecular interactions. <i>Chemical Communications</i> , 2013 , 49, 373-5	5.8	33
133	Recent advances in the synthesis of fluorinated aminophosphonates and aminophosphonic acids. <i>RSC Advances</i> , 2013 , 3, 6693	3.7	130
132	New asymmetric approach to Etrifluoromethyl isoserines. RSC Advances, 2013, 3, 6479	3.7	32
131	Optical purifications via self-disproportionation of enantiomers by achiral chromatography: case study of a series of £CF3-containing secondary alcohols. <i>Chirality</i> , 2013 , 25, 365-8	2.1	73
130	Chemical deracemization and (S) to (R) interconversion of some fluorine-containing hamino acids. Journal of Fluorine Chemistry, 2013 , 152, 114-118	2.1	43
129	Chemical approach for interconversion of (S)- and (R)-themino acids. <i>Organic and Biomolecular Chemistry</i> , 2013 , 11, 4503-7	3.9	44
128	Self-Disproportionation of Enantiomers of Chiral, Non-Racemic Fluoroorganic Compounds: Role of Fluorine as Enabling Element. <i>Synthesis</i> , 2013 , 45, 141-152	2.9	66
127	Self-disproportionation of enantiomers of non-racemic chiral amine derivatives through achiral chromatography. <i>Tetrahedron</i> , 2012 , 68, 4013-4017	2.4	50
126	Asymmetric synthesis of phosphonotrifluoroalanine and its derivatives using N-tert-butanesulfinyl imine derived from fluoral. <i>Tetrahedron Letters</i> , 2012 , 53, 539-542	2	79
125	Alkylations of Chiral Nickel(II) Complexes of Glycine under Phase-Transfer Conditions. <i>Helvetica Chimica Acta</i> , 2012 , 95, 2672-2679	2	24
124	Efficient asymmetric synthesis of trifluoromethylated Elaminophosphonates and their incorporation into dipeptides. <i>Chemical Communications</i> , 2012 , 48, 11519-21	5.8	73
123	First Experimental Evidence of an Intramolecular H Bond between Aliphatic Cl and Aromatic CH. <i>Crystal Growth and Design</i> , 2012 , 12, 33-36	3.5	9
122	Design and synthesis of quasi-diastereomeric molecules with unchanging central, regenerating axial and switchable helical chirality via cleavage and formation of Ni(II)-O and Ni(II)-N coordination bonds. <i>Beilstein Journal of Organic Chemistry</i> , 2012 , 8, 1920-8	2.5	4
121	Self-disproportionation of enantiomers via achiral chromatography: a warning and an extra dimension in optical purifications. <i>Chemical Society Reviews</i> , 2012 , 41, 4180-8	58.5	130
120	Organic base-catalyzed stereodivergent synthesis of (R)- and (S)-3-amino-4,4,4-trifluorobutanoic acids. <i>Chemical Communications</i> , 2012 , 48, 4124-6	5.8	87
119	Recent Advances in the Asymmetric Synthesis of E(Trifluoromethyl)-Containing EAmino Acids. <i>Synthesis</i> , 2012 , 44, 1591-1602	2.9	149
118	Theoretical investigations into the enantiomeric and racemic forms of Etrifluoromethyl)lactic acid. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 811-7	3.6	15
117	Self-Disproportionation of Enantiomers via Sublimation; New and Truly Green Dimension in Optical Purification. <i>Current Organic Synthesis</i> , 2011 , 8, 310-317	1.9	79

(2009-2011)

116	Asymmetric synthesis of sterically and electronically demanding linear Erifluoromethyl containing amino acids via alkylation of chiral equivalents of nucleophilic glycine and alanine. Journal of Organic Chemistry, 2011, 76, 684-7	4.2	51
115	Reply to the Comment on Theoretical investigations into the enantiomeric and racemic forms of Etrifluoromethyl)lactic acid by M. A. Suhm and M. Albrecht, Phys. Chem. Chem. Phys., 2011, 13, DOI: 10.1039/c0cp02455d. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 4161	3.6	4
114	Convenient synthesis of fluoroalkyl <code>\Band Eminophosphonates</code> . <i>Journal of Fluorine Chemistry</i> , 2011 , 132, 834-837	2.1	21
113	Synthesis of Fluorinated EAmino Acids. <i>Synthesis</i> , 2011 , 2011, 3045-3079	2.9	35
112	Biomimetic Transamination Metal-Free Alternative to the Reductive Amination. Application for Generalized Preparation of Fluorine-Containing Amines and Amino Acids. <i>Current Organic Synthesis</i> , 2011 , 8, 281-294	1.9	84
111	Practical Methods for the Synthesis of Symmetrically ⊞Disubstituted ⊕Amino Acids. <i>Synthesis</i> , 2010 , 2010, 2319-2344	2.9	103
110	Ridge-tile-like chiral topology: synthesis, resolution, and complete chiroptical characterization of enantiomers of edge-sharing binuclear square planar complexes of Ni(II) bearing achiral ligands. <i>Journal of the American Chemical Society</i> , 2010 , 132, 10477-83	16.4	39
109	Asymmetric synthesis of fluorine-containing amines, amino alcohols, <code>\(\text{H}\) and <code>\(\text{H}\) amino acids mediated by chiral sulfinyl group. <i>Journal of Fluorine Chemistry</i>, 2010, 131, 127-139</code></code>	2.1	141
108	Self-disproportionation of enantiomers of 3,3,3-trifluorolactic acid amides via sublimation. <i>Journal of Fluorine Chemistry</i> , 2010 , 131, 266-269	2.1	52
107	Self-disproportionation of enantiomers of <code>trifluoromethyl</code> lactic acid amides via sublimation. <i>Journal of Fluorine Chemistry</i> , 2010 , 131, 540-544	2.1	41
106	Chirality-dependent sublimation of -(trifluoromethyl)-lactic acid: Relative vapor pressures of racemic, eutectic, and enantiomerically pure forms, and vibrational spectroscopy of isolated (S,S) and (S,R) dimers. <i>Journal of Fluorine Chemistry</i> , 2010 , 131, 495-504	2.1	42
105	Self-disproportionation of enantiomers of isopropyl 3,3,3-(trifluoro)lactate via sublimation: Sublimation rates vs. enantiomeric composition. <i>Journal of Fluorine Chemistry</i> , 2010 , 131, 535-539	2.1	56
104	First principle lattice energy calculations for enantiopure and racemic crystals of {\text{trifluoromethyl}} lactic acid: Is self-disproportionation of enantiomers controlled by thermodynamic stability of crystals?. <i>Journal of Fluorine Chemistry</i> , 2010 , 131, 461-466	2.1	22
103	Rational application of self-disproportionation of enantiomers via sublimation novel methodological dimension for enantiomeric purifications. <i>Tetrahedron: Asymmetry</i> , 2010 , 21, 1396-1400	•	86
102	New Generation of Modular Nucleophilic Glycine Equivalents for the General Synthesis of Amino Acids. <i>Synlett</i> , 2009 , 2009, 704-715	2.2	38
101	Practical synthesis of fluorine-containing <code>Hand</code> <code>Eamino</code> acids: recipes from Kiev, Ukraine. <i>Future Medicinal Chemistry</i> , 2009 , 1, 793-819	4.1	104
100	Concise asymmetric synthesis of configurationally stable 4-trifluoromethyl thalidomide. <i>Future Medicinal Chemistry</i> , 2009 , 1, 897-908	4.1	16
99	Resolution/deracemization of chiral alpha-amino acids using resolving reagents with flexible stereogenic centers. <i>Journal of the American Chemical Society</i> , 2009 , 131, 7208-9	16.4	85

98	Asymmetric Synthesis of (2S,3S)- and (2R,3R)- Dialkyl mino Acids via Alkylation of Chiral Nickel(II) Complexes of Aliphatic Amino Acids with Racemic Alkylbenzyl Bromides. <i>Synthesis</i> , 2008 , 2008, 2594-2602	2.9	20
97	Efficient asymmetric synthesis of the functionalized pyroglutamate core unit common to oxazolomycin and neooxazolomycin using Michael reaction of nucleophilic glycine Schiff base with Edisubstituted acrylate. <i>Tetrahedron: Asymmetry</i> , 2008 , 19, 2789-2795		45
96	Phenomenon of optical self-purification of chiral non-racemic compounds. <i>Journal of the American Chemical Society</i> , 2007 , 129, 12112-3	16.4	164
95	Design, synthesis, and characterization of binuclear Ni(II) complexes with inherent helical chirality. Journal of the American Chemical Society, 2007 , 129, 2426-7	16.4	34
94	Catalytic asymmetric synthesis of Exifluoromethyl) benzylamine via cinchonidine derived base-catalyzed biomimetic 1,3-proton shift reaction. <i>Journal of Fluorine Chemistry</i> , 2007 , 128, 170-173	2.1	44
93	Design and synthesis of molecules with switchable chirality via formation and cleavage of metal-ligand coordination bonds. <i>Journal of the American Chemical Society</i> , 2007 , 129, 3512-3	16.4	21
92	Operationally convenient asymmetric synthesis of (S)- and (R)-3-amino-4,4,4-trifluorobutanoic acid. Journal of Fluorine Chemistry, 2006 , 127, 924-929	2.1	52
91	Remarkable amplification of the self-disproportionation of enantiomers on achiral-phase chromatography columns. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 766-9	16.4	190
90	Remarkable Amplification of the Self-Disproportionation of Enantiomers on Achiral-Phase Chromatography Columns. <i>Angewandte Chemie</i> , 2006 , 118, 780-783	3.6	31
89	Design and Synthesis of a New Generation of MHENi(II) Complexes of Glycine Schiff Bases and their Unprecedented C-H vs. N-H Chemoselectivity in Alkyl Halide Alkylations and Michael Addition Reactions. <i>Synlett</i> , 2006 , 2006, 0533-0538	2.2	13
88	Design, synthesis, and evaluation of a new generation of modular nucleophilic glycine equivalents for the efficient synthesis of sterically constrained alpha-amino acids. <i>Journal of Organic Chemistry</i> , 2006 , 71, 8572-8	4.2	76
87	Efficient asymmetric synthesis of novel 4-substituted and configurationally stable analogues of thalidomide. <i>Organic Letters</i> , 2006 , 8, 5625-8	6.2	71
86	Self-disproportionation of enantiomers of (R)-ethyl 3-(3,5-dinitrobenzamido)-4,4,4-trifluorobutanoate on achiral silica gel stationary phase. <i>Journal of Fluorine Chemistry</i> , 2006 , 127, 597-603	2.1	93
85	Operationally convenient asymmetric synthesis of (S)- and (R)-3-amino-4,4,4-trifluorobutanoic acid: Part II. Enantioselective biomimetic transamination of 4,4,4-trifluoro-3-oxo-N-[(R)-1-phenylethyl]butanamide. <i>Journal of Fluorine Chemistry</i> , 2006 , 127, 930-93	2.1 5	76
84	Operationally convenient, efficient asymmetric synthesis of enantiomerically pure 4-aminoglutamic acids via methylene dimerization of chiral glycine equivalents with dichloromethane. <i>Tetrahedron</i> , 2006 , 62, 6412-6419	2.4	25
83	Michael addition reactions between chiral equivalents of a nucleophilic glycine and (S)- or (R)-3-[(E)-enoyl]-4-phenyl-1,3-oxazolidin-2-ones as a general method for efficient preparation of beta-substituted pyroglutamic acids. Case of topographically controlled stereoselectivity. <i>Journal</i>	16.4	77
82	Organocatalytic Approaches to Enantioenriched EAmino Acids 2005 , 195-213		1
81	Asymmetric Synthesis of Phosphonic Analogs of EAmino Acids 2005 , 261-276		5

(2005-2005)

80	Stereoselective Synthesis of Fluorine-Containing EAmino Acids 2005 , 319-350	О
79	Preparation of Enantiopure EAmino Acids via Enantioselective Conjugate Addition 2005, 377-395	O
78	Asymmetric Synthesis of Bubstituted-Pamino Phosphonates and Phosphinates and Pamino Sulfur Analogs 2005 , 277-318	7
77	Enantioselective Synthesis of EAmino Acids via Conjugate Addition to EUnsaturated Carbonyl Compounds 2005 , 351-376	О
76	Recent Advances in the Synthesis of Hydroxy-Pamino Acids and Their Use in the SAR Studies of Taxane Anticancer Agents 2005 , 447-476	7
75	Multiple-Component Condensation Methods for Preparation of Combinatorial Libraries of EAmino Carbonyl Derivatives 2005 , 497-525	O
74	Enantioselective Synthesis of Novel ElAmino Acids 2005 , 241-260	0
73	Preparation of Enantiopure EAmino Acids by Homologation of EAmino Acids 2005 , 93-106	7
72	Asymmetric Catalysis in Enantioselective Synthesis of EAmino Acids 2005 , 107-115	6
71	Asymmetric Synthesis of EAmino Acids by Enolate Additions to tert-Butanesulfinyl Imines 2005 , 181-194	0
70	Asymmetric Synthesis of Cyclic EAmino Acids via Cycloaddition Reactions 2005 , 215-240	0
69	Stereoselective Synthesis of FAmino Acids via Radical Reactions 2005 , 415-446	0
68	Synthesis of EAmino Acids and Their Derivatives from ELactams: Update 2005 , 477-495	5
67	Using Constrained EAmino Acid Residues to Control EPeptide Shape and Function 2005 , 527-591	6
66	Q -Amino Acids with Proteinogenic Side Chains and Corresponding Peptides: Synthesis, Secondary Structure, and Biological Activity 2005 , 593-617	0
65	Enantioselective Synthesis of Conformationally Constrained FAmino Acids 2005 , 117-138	3
64	New generation of nucleophilic glycine equivalents. <i>Tetrahedron Letters</i> , 2005 , 46, 941-944 2	34
63	Application of modular nucleophilic glycine equivalents for truly practical asymmetric synthesis of Eubstituted pyroglutamic acids. <i>Tetrahedron Letters</i> , 2005 , 46, 1107-1110	71

62	Structural Types of Relevant Amino Acid Targets 2005 , 1-17		1
61	Catalytic Enantioselective Mannich Reactions 2005 , 139-157		5
60	Biocatalytic Entry to Enantiomerically Pure EAmino Acids 2005 , 397-414		0
59	EAmino Acids in Natural Products 2005 , 19-91		25
58	Enantioselective Synthesis of EAmino Acids via Stereoselective Hydrogenation of EAminoacrylic Acid Derivatives 2005 , 159-179		4
57	An efficient and operationally convenient general synthesis of tertiary amines by direct alkylation of secondary amines with alkyl halides in the presence of Huenig base. <i>Arkivoc</i> , 2005 , 2005, 287-292	0.9	77
56	Asymmetric synthesis of enantiomerically pure 4-aminoglutamic acids via methylenedimerization of chiral glycine equivalents with dichloromethane under operationally convenient conditions. <i>Tetrahedron Letters</i> , 2004 , 45, 9159-9162	2	50
55	Virtually complete control of simple and face diastereoselectivity in the Michael addition reactions between achiral equivalents of a nucleophilic glycine and (S)- or (R)-3-(E-enoyl)-4-phenyl-1,3-oxazolidin-2-ones: practical method for preparation of	4.2	72
54	Efficient, practical synthesis of symmetrically ⊞disubstituted ⊞mino acids. <i>Tetrahedron Letters</i> , 2003 , 44, 1063-1066	2	37
53	Efficient synthesis of serically constrained smmetrically alpha, alpha-disubstituted alpha-amino acids under operationally convenient conditions. <i>Journal of Organic Chemistry</i> , 2003 , 68, 6208-14	4.2	65
52	Improved synthesis of proline-derived Ni(II) complexes of glycine: versatile chiral equivalents of nucleophilic glycine for general asymmetric synthesis of alpha-amino acids. <i>Journal of Organic Chemistry</i> , 2003 , 68, 7104-7	4.2	80
51	Efficient synthesis of 2-aminoindane-2-carboxylic acid via dialkylation of nucleophilic glycine equivalent. <i>Journal of Organic Chemistry</i> , 2003 , 68, 4973-6	4.2	55
50	Convenient asymmetric synthesis of beta-substituted alpha,alpha-difluoro-beta-amino acids via Reformatsky reaction between Davis' N-sulfinylimines and ethyl bromodifluoroacetate. <i>Journal of Organic Chemistry</i> , 2003 , 68, 7448-54	4.2	77
49	Convenient, large-scale asymmetric synthesis of Earyl-substituted Edifluoro-Eamino acids. <i>Tetrahedron Letters</i> , 2002 , 43, 5445-5448	2	74
48	Highly Diastereoselective Michael Addition Reactions between Nucleophilic Glycine Equivalents and β-substituted-α,β-Unsaturated Carboxylic acid Derivatives a General Approach to the Stereochemically Defined and Sterically χ-Constrained α-Amino Acids.	1.7	82
47	Large-scale asymmetric synthesis of novel sterically constrained 2?,6?-dimethyl- and \$\mathbb{P}\$?,6?-trimethyltyrosine and -phenylalanine derivatives via alkylation of chiral equivalents of nucleophilic glycine and alanine. <i>Tetrahedron</i> , 2001 , 57, 6375-6382	2.4	83
46	Stereoselective synthesis of conformationally constrained reverse turn dipeptide mimetics. <i>Tetrahedron Letters</i> , 2001 , 42, 145-148	2	72
45	Asymmetric synthesis of alpha,beta-dialkyl-alpha-phenylalanines via direct alkylation of a chiral alanine derivative with racemic alpha-alkylbenzyl bromides. A case of high enantiomer differentiation at room temperature. <i>Organic Letters</i> , 2001 , 3, 341-3	6.2	77

44	Michael addition reactions between chiral Ni(II) complex of glycine and 3-(trans-enoyl)oxazolidin-2-ones. A case of electron donor-acceptor attractive interaction-controlled face diastereoselectivity. <i>Journal of Organic Chemistry</i> , 2001 , 66, 1339-50	4.2	61
43	A Practical Asymmetric Synthesis of Enantiomerically Pure 3-Substituted Pyroglutamic Acids and Related Compounds. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 2172-2175	16.4	63
42	A unique case of face diastereoselectivity in the Michael addition reactions between Ni(II)-complexes of glycine and chiral 3-(E-enoyl)-1,3-oxazolidin-2-ones. <i>Tetrahedron Letters</i> , 2000 , 41, 9645-9649	2	49
41	Toward design of a practical methodology for stereocontrolled synthesis of Econstrained pyroglutamic acids and related compounds. Virtually complete control of simple diastereoselectivity in the Michael addition reactions of glycine Ni(II) complexes with	2	67
40	Convenient, asymmetric synthesis of enantiomerically pure 2?,6?-dimethyltyrosine (DMT) via alkylation of chiral equivalent of nucleophilic glycine. <i>Tetrahedron: Asymmetry</i> , 2000 , 11, 2917-2925		74
39	Convenient, Large-Scale Asymmetric Synthesis of Enantiomerically Pure trans-Cinnamylglycine and -HAlanine. <i>Tetrahedron</i> , 2000 , 56, 2577-2582	2.4	56
38	Rational design of highly diastereoselective, organic base-catalyzed, room-temperature Michael addition reactions. <i>Journal of Organic Chemistry</i> , 2000 , 65, 6688-96	4.2	71
37	(S)- or (R)-3-(E-enoyl)-4-phenyl-1,3-oxazolidin-2-ones: ideal Michael acceptors to afford a virtually complete control of simple and face diastereoselectivity in addition reactions with glycine derivatives. <i>Organic Letters</i> , 2000 , 2, 747-50	6.2	73
36	Asymmetric catalysis of the friedel-crafts reaction with fluoral by chiral binaphthol-derived titanium catalysts through asymmetric activation. <i>Journal of Organic Chemistry</i> , 2000 , 65, 1597-9	4.2	90
35	Asymmetric synthesis of novel highly sterically constrained (2S,3S)-3-methyl-3-trifluoromethyl- and (2S,3S,4R)-3-trifluoromethyl-4-methylpyroglutamic acids. <i>Tetrahedron</i> , 1999 , 55, 12045-12058	2.4	95
34	Asymmetric Michael addition reactions of chiral Ni(II)-complex of glycine with (N-trans-enoyl)oxazolidines: improved reactivity and stereochemical outcome. <i>Tetrahedron: Asymmetry</i> , 1999 , 10, 4265-4269		59
33	Stereochemically defined C-substituted glutamic acids and their derivatives. 1. An efficient asymmetric synthesis of (2S,3S)-3-methyl- and -3-trifluoromethylpyroglutamic acids. <i>Tetrahedron</i> , 1999 , 55, 12031-12044	2.4	79
32	Chiral sulfoxide controlled asymmetric additions to C?N double bond. An efficient approach to stereochemically defined Fluoroalkyl amino compounds. <i>Tetrahedron</i> , 1998 , 54, 12789-12806	2.4	70
31	Biomimetic Transamination of 🗗 lkyl Eketo Carboxylic Esters. Chemoenzymatic Approach to the Stereochemically Defined 🗗 lkyl Efluoroalkyl Ekmino Acids. <i>Journal of Organic Chemistry</i> , 1998 , 63, 1878-1884	4.2	75
30	Stereoselective Additions of £lithiated Alkyl-p-tolylsulfoxides toN-PMP(fluoroalkyl)aldimines. An Efficient Approach to Enantiomerically Pure Fluoro Amino Compounds. <i>Journal of Organic Chemistry</i> , 1997 , 62, 3424-3425	4.2	74
29	Enantioselective Biomimetic Transamination of EKeto Carboxylic Acid Derivatives. An Efficient Asymmetric Synthesis of E(Fluoroalkyl) EAmino Acids. <i>Journal of Organic Chemistry</i> , 1997 , 62, 7538-7539	4.2	72
28	Transition Metal/Base-Catalyzed Aldol Reactions of Isocyanoacetic Acid Derivatives with Prochiral Ketones, a Straightforward Approach to Stereochemically Defined [IDisubstituted-Hydroxy-Hamino Acids.1 Scope and Limitations. Journal of Organic Chemistry,	4.2	70
27	1997 , 62, 3470-3479 Biomimetic transamination of ⊞eto perfluorocarboxylic esters. An efficient preparative synthesis of ⊞rifluoroalanine. <i>Tetrahedron</i> , 1997 , 53, 8307-8314	2.4	76

26	Highly diastereoselective aza-aldol reactions of a chiral Ni(II) complex of glycine with imines. An efficient asymmetric approach to 3-perfluoroalkyl-2,3-diamino acids. <i>Tetrahedron Letters</i> , 1997 , 38, 467	1 ² 4674	1 ⁸²
25	An efficient asymmetric synthesis of (2S,3S)-3-trifluoromethylpyroglutamic acid. <i>Tetrahedron Letters</i> , 1997 , 38, 4903-4904	2	63
24	Biomimetic Reductive Amination of Fluoro Aldehydes and Ketones via [1,3]-Proton Shift Reaction.(1) Scope and Limitations. <i>Journal of Organic Chemistry</i> , 1996 , 61, 6563-6569	4.2	82
23	Gold(I)-catalyzed asymmetric aldol reactions of isocyanoacetic acid derivatives with fluoroaryl aldehydes. <i>Tetrahedron</i> , 1996 , 52, 245-254	2.4	66
22	The effect of substituents on the feasibility of azomethine-azomethine isomerization: New synthetic opportunities for biomimetic transamination. <i>Tetrahedron</i> , 1996 , 52, 14701-14712	2.4	73
21	Biomimetic base-catalyzed [1,3]-proton shift reaction. A practical synthesis of Fluoroalkyl-Lamino acids. <i>Tetrahedron</i> , 1996 , 52, 6953-6964	2.4	74
20	Asymmetric aldol reactions of trifluoromethyl ketones with a chiral Ni(II) complex of glycine: Stereocontrolling effect of the trifluoromethyl group. <i>Tetrahedron</i> , 1996 , 52, 12433-12442	2.4	83
19	Highly diastereoselective asymmetric aldol reactions of chiral Ni(II)-complex of glycine with alkyl trifluoromethyl ketones. <i>Tetrahedron: Asymmetry</i> , 1996 , 7, 1547-1550		76
18	Biocatalytic approach to enantiomerically pure famino acids. <i>Tetrahedron: Asymmetry</i> , 1995 , 6, 1601-167	10	88
17	Asymmetric aldol reactions of chiral Ni(II)-complex of glycine with aliphatic aldehydes. Stereodivergent synthesis of syn-(2S)- and syn-(2R)-Ealkylserines. <i>Tetrahedron: Asymmetry</i> , 1995 , 6, 174	1-1756	90
16	Gold(I)-catalyzed asymmetric aldol reactions of fluorinated benzaldehydes with an \exists socyanoacetamide. <i>Tetrahedron: Asymmetry</i> , 1994 , 5, 1091-1094		74
15	Biocatalytic resolution of Efluoroalkyl-Eamino acids. <i>Tetrahedron: Asymmetry</i> , 1994 , 5, 1119-1126		69
14	Catalytic asymmetric synthesis of Efluoroalkyl-Eamino acids via biomimetic [1,3]-proton shift reaction. <i>Tetrahedron Letters</i> , 1994 , 35, 5063-5064	2	80
13	Gold(I)-catalyzed asymmetric aldol reaction of methyl isocyanoacetate with fluorinated benzaldehydes. <i>Tetrahedron Letters</i> , 1994 , 35, 2713-2716	2	67
12	Highly diastereoselective aldol reaction of fluoroalkyl aryl ketones with methyl isocyanoacetate catalyzed by silver(I)/triethylamine. <i>Tetrahedron Letters</i> , 1994 , 35, 1055-1058	2	80
11	Synthesis of optically pure (R)- and (S)-trifluoromethyl-alanine. <i>Tetrahedron: Asymmetry</i> , 1994 , 5, 2009-	2018	60
10	New fluorinated chiral synthons. <i>Tetrahedron: Asymmetry</i> , 1994 , 5, 987-1004		55
9	Chemo-enzymatic approach to the synthesis of each of the four isomers of Halkyl-Ifluoroalkyl-substituted Hamino acids. <i>Tetrahedron: Asymmetry</i> , 1994 , 5, 1225-1228		74

LIST OF PUBLICATIONS

8	Asymmetric synthesis of fluorine- and phosphorus-containing analogues of aminoacids. <i>Russian Chemical Reviews</i> , 1993 , 62, 261-278	6.8	35	
7	General method for the synthesis of enantiomerically pure Fhydroxy-Hamino acids, containing fluorine atoms in the side chains. Case of stereochemical distinction between methyl and trifluoromethyl groups. X-Ray crystal and molecular structure of the nickel(II) complex of		91	
6	An Enzymatic Entry to Enantiopure EAmino Acids. Synlett, 1993 , 1993, 339-341	2.2	41	
5	Asymmetric Synthesis of Organoelement Analogues of Natural Products; Part 12: General Method for the Asymmetric Synthesis of Fluorine-Containing Phenylalanines and EMethyl(phenyl)alanines via Alkylation of the Chiral Nickel(II) Schiff's Base Complexes of Glycine and Alanine. Synthesis, 1993	2.9	35	
4	Transamination of fluorinated Eketo carboxylic esters. A biomimetic approach to Epolyfluoroalkyl-Eamino acids <i>Tetrahedron Letters</i> , 1993 , 34, 3621-3624	2	77	
3	A Novel Approach to the Synthesis of Symmetric Optically Active 2,5-Dioxopiperazines. <i>Synthesis</i> , 1992 , 1992, 449-451	2.9	55	
2	Asymmetric synthesis of phosphorus analogues of dicarboxylic ⊞mino acids. <i>Journal of the Chemical Society Perkin Transactions 1</i> , 1992 , 1525-1529		83	
1	The unusual action of (R,S)-2-hydroxy-2-trifluoromethyl-trans-n-octadec-4-enoic acid on 5-lipoxygenase from potato tubers. <i>FEBS Journal</i> , 1991 , 199, 153-5		13	