
Wai T Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7507029/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Retinal microglia: Just bystander or target for therapy?. Progress in Retinal and Eye Research, 2015, 45, 30-57.	15.5	433
2	Ageâ€related alterations in the dynamic behavior of microglia. Aging Cell, 2011, 10, 263-276.	6.7	372
3	Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Molecular Medicine, 2015, 7, 1179-1197.	6.9	340
4	Age-related macular degeneration. Nature Reviews Disease Primers, 2021, 7, 31.	30.5	340
5	Secondary Analyses of the Effects of Lutein/Zeaxanthin on Age-Related Macular Degeneration Progression. JAMA Ophthalmology, 2014, 132, 142.	2.5	330
6	Microglial Morphology and Dynamic Behavior Is Regulated by Ionotropic Glutamatergic and GABAergic Neurotransmission. PLoS ONE, 2011, 6, e15973.	2.5	278
7	Rapid Dendritic Remodeling in the Developing Retina: Dependence on Neurotransmission and Reciprocal Regulation by Rac and Rho. Journal of Neuroscience, 2000, 20, 5024-5036.	3.6	226
8	Microglia in the Retina: Roles in Development, Maturity, and Disease. Annual Review of Vision Science, 2018, 4, 45-77.	4.4	221
9	DeepSeeNet: A Deep Learning Model for Automated Classification of Patient-based Age-related Macular Degeneration Severity from Color Fundus Photographs. Ophthalmology, 2019, 126, 565-575.	5.2	220
10	Clinical-grade stem cell–derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Science Translational Medicine, 2019, 11, .	12.4	206
11	Microglial aging in the healthy CNS: phenotypes, drivers, and rejuvenation. Frontiers in Cellular Neuroscience, 2013, 7, 22.	3.7	197
12	Adaptive Müller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina. Journal of Neuroinflammation, 2011, 8, 173.	7.2	187
13	Requirement for Microglia for the Maintenance of Synaptic Function and Integrity in the Mature Retina. Journal of Neuroscience, 2016, 36, 2827-2842.	3.6	179
14	Microglia in the Mouse Retina Alter the Structure and Function of Retinal Pigmented Epithelial Cells: A Potential Cellular Interaction Relevant to AMD. PLoS ONE, 2009, 4, e7945.	2.5	178
15	Evaluation of Time Domain and Spectral Domain Optical Coherence Tomography in the Measurement of Diabetic Macular Edema. , 2008, 49, 4290.		176
16	Macroglia-Microglia Interactions via TSPO Signaling Regulates Microglial Activation in the Mouse Retina. Journal of Neuroscience, 2014, 34, 3793-3806.	3.6	176
17	Ex Vivo Dynamic Imaging of Retinal Microglia Using Time-Lapse Confocal Microscopy. Investigative Ophthalmology and Visual Science, 2008, 49, 4169-4176.	3.3	170
18	TACHYPHYLAXIS AFTER INTRAVITREAL BEVACIZUMAB FOR EXUDATIVE AGE-RELATED MACULAR DEGENERATION. Retina, 2009, 29, 723-731.	1.7	170

#	Article	IF	CITATIONS
19	Developmentally Regulated Spontaneous Activity in the Embryonic Chick Retina. Journal of Neuroscience, 1998, 18, 8839-8852.	3.6	168
20	Regulation of Dynamic Behavior of Retinal Microglia by CX3CR1 Signaling. , 2009, 50, 4444.		165
21	Clinical Characterization of Retinal Capillary Hemangioblastomas in a Large Population of Patients with von Hippel–Lindau Disease. Ophthalmology, 2008, 115, 181-188.	5.2	154
22	Impairments in Dark Adaptation Are Associated with Age-Related Macular Degeneration Severity and Reticular Pseudodrusen. Ophthalmology, 2015, 122, 2053-2062.	5.2	150
23	Microglial phagocytosis and activation underlying photoreceptor degeneration is regulated by CX3CL1 X3CR1 signaling in a mouse model of retinitis pigmentosa. Clia, 2016, 64, 1479-1491.	4.9	145
24	Natural History of Drusenoid Pigment Epithelial Detachment in Age-Related Macular Degeneration: Age-Related Eye Disease Study Report No. 28. Ophthalmology, 2010, 117, 489-499.	5.2	142
25	RELATIONSHIP BETWEEN PHOTORECEPTOR OUTER SEGMENT LENGTH AND VISUAL ACUITY IN DIABETIC MACULAR EDEMA. Retina, 2010, 30, 63-70.	1.7	141
26	Developmental Changes in the Neurotransmitter Regulation of Correlated Spontaneous Retinal Activity. Journal of Neuroscience, 2000, 20, 351-360.	3.6	133
27	Lutein/Zeaxanthin for the Treatment of Age-Related Cataract. JAMA Ophthalmology, 2013, 131, 843.	2.5	119
28	Rapid dendritic movements during synapse formation and rearrangement. Current Opinion in Neurobiology, 2000, 10, 118-124.	4.2	116
29	Fundus Autofluorescence Imaging of the White Dot Syndromes. JAMA Ophthalmology, 2010, 128, 46.	2.4	116
30	Spectral-Domain Optical Coherence Tomography Characteristics of Intermediate Age-related Macular Degeneration. Ophthalmology, 2013, 120, 140-150.	5.2	107
31	Treatment of Geographic Atrophy by the Topical Administration of OT-551: Results of a Phase II Clinical Trial. , 2010, 51, 6131.		104
32	Gene expression changes in aging retinal microglia: relationship to microglial support functions and regulation of activation. Neurobiology of Aging, 2013, 34, 2310-2321.	3.1	100
33	Intravitreal Ranibizumab Therapy for Retinal Capillary Hemangioblastoma Related to von Hippel-Lindau Disease. Ophthalmology, 2008, 115, 1957-1964.e3.	5.2	99
34	Microglia-Müller Cell Interactions in the Retina. Advances in Experimental Medicine and Biology, 2014, 801, 333-338.	1.6	98
35	Oral Minocycline for the Treatment of Diabetic Macular Edema (DME): Results of a Phase I/II Clinical Study. , 2012, 53, 3865.		94
36	Changes in Retinal Sensitivity in Geographic Atrophy Progression as Measured by Microperimetry. , 2011, 52, 1119.		90

#	Article	IF	CITATIONS
37	Changing specificity of neurotransmitter regulation of rapid dendritic remodeling during synaptogenesis. Nature Neuroscience, 2001, 4, 351-352.	14.8	89
38	Ocular and Systemic Autoimmunity after Successful Tumor-Infiltrating Lymphocyte Immunotherapy for Recurrent, Metastatic Melanoma. Ophthalmology, 2009, 116, 981-989.e1.	5.2	88
39	Fundus Autofluorescence in Type 2 Idiopathic Macular Telangiectasia: Correlation with Optical Coherence Tomography and Microperimetry. American Journal of Ophthalmology, 2009, 148, 573-583.	3.3	88
40	A2E accumulation influences retinal microglial activation and complement regulation. Neurobiology of Aging, 2013, 34, 943-960.	3.1	87
41	Monocyte infiltration and proliferation reestablish myeloid cell homeostasis in the mouse retina following retinal pigment epithelial cell injury. Scientific Reports, 2017, 7, 8433.	3.3	84
42	C3- and CR3-dependent microglial clearance protects photoreceptors in retinitis pigmentosa. Journal of Experimental Medicine, 2019, 216, 1925-1943.	8.5	82
43	7-Ketocholesterol Increases Retinal Microglial Migration, Activation and Angiogenicity: A Potential Pathogenic Mechanism Underlying Age-related Macular Degeneration. Scientific Reports, 2015, 5, 9144.	3.3	81
44	Repopulating retinal microglia restore endogenous organization and function under CX3CL1-CX3CR1 regulation. Science Advances, 2018, 4, eaap8492.	10.3	81
45	Centrifugal Expansion of Fundus Autofluorescence Patterns in Stargardt Disease Over Time. JAMA Ophthalmology, 2012, 130, 171.	2.4	80
46	Spatial Correlation between Hyperpigmentary Changes on Color Fundus Photography and Hyperreflective Foci on SDOCT in Intermediate AMD. , 2012, 53, 4626.		80
47	Relationship of Central Choroidal Thickness With Age-Related Macular Degeneration Status. American Journal of Ophthalmology, 2015, 159, 617-626.e2.	3.3	77
48	Optical Coherence Tomography Predictors of Risk for Progression to Non-Neovascular Atrophic Age-Related Macular Degeneration. Ophthalmology, 2017, 124, 1764-1777.	5.2	77
49	FUNDUS AUTOFLUORESCENCE CHANGES IN CYTOMEGALOVIRUS RETINITIS. Retina, 2010, 30, 42-50.	1.7	76
50	Absence of TGFβ signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. ELife, 2019, 8, .	6.0	75
51	Genotype-Phenotype Correlation in von Hippel-Lindau Disease With Retinal Angiomatosis. JAMA Ophthalmology, 2007, 125, 239.	2.4	70
52	Optical Coherence Tomography Reflective Drusen Substructures Predict Progression to Geographic Atrophy in Age-related Macular Degeneration. Ophthalmology, 2016, 123, 2554-2570.	5.2	69
53	Deletion of Aryl Hydrocarbon Receptor AHR in Mice Leads to Subretinal Accumulation of Microglia and RPE Atrophy. , 2014, 55, 6031.		67
54	FINASTERIDE FOR CHRONIC CENTRAL SEROUS CHORIORETINOPATHY. Retina, 2011, 31, 766-771.	1.7	66

#	Article	IF	CITATIONS
55	Treatment of Geographic Atrophy With Subconjunctival Sirolimus: Results of a Phase I/II Clinical Trial. , 2013, 54, 2941.		65
56	Aging Changes in Retinal Microglia and their Relevance to Age-related Retinal Disease. Advances in Experimental Medicine and Biology, 2016, 854, 73-78.	1.6	65
57	Subjective and Objective Screening Tests for HydroxychloroquineÂToxicity. Ophthalmology, 2015, 122, 356-366.	5.2	58
58	Intravitreal Sirolimus for the Treatment of Geographic Atrophy: Results of a Phase I/II Clinical Trial. Investigative Ophthalmology and Visual Science, 2015, 56, 330-338.	3.3	57
59	Epidemiology of Epiretinal Membrane in aÂLarge Cohort of Patients with Uveitis. Ophthalmology, 2014, 121, 2393-2398.	5.2	56
60	Tamoxifen Provides Structural and Functional Rescue in Murine Models of Photoreceptor Degeneration. Journal of Neuroscience, 2017, 37, 3294-3310.	3.6	56
61	A Deep Learning Approach for Automated Detection of Geographic Atrophy from Color Fundus Photographs. Ophthalmology, 2019, 126, 1533-1540.	5.2	55
62	Ocular von Hippel–Lindau disease: clinical update and emerging treatments. Current Opinion in Ophthalmology, 2008, 19, 213-217.	2.9	53
63	Microglia in the Outer Retina and Their Relevance to Pathogenesis of Age-Related Macular Degeneration. Advances in Experimental Medicine and Biology, 2012, 723, 37-42.	1.6	52
64	Preservation of Cone Photoreceptors after a Rapid yet Transient Degeneration and Remodeling in Cone-Only <i>Nrl</i> ^{â~'/â~'} Mouse Retina. Journal of Neuroscience, 2012, 32, 528-541.	3.6	51
65	Investigation of the role of neutralizing antibodies against bevacizumab as mediators of tachyphylaxis. Acta Ophthalmologica, 2011, 89, e206-e207.	1.1	50
66	Oral Supplementation of Lutein/Zeaxanthin and Omega-3 Long Chain Polyunsaturated Fatty Acids in Persons Aged 60 Years or Older, with or without AMD. , 2008, 49, 3864.		45
67	Minocycline Attenuates Photoreceptor Degeneration in a Mouse Model of Subretinal Hemorrhage. American Journal of Pathology, 2011, 179, 1265-1277.	3.8	44
68	Longitudinal Study of Dark Adaptation asÂaÂFunctional Outcome Measure for Age-Related Macular Degeneration. Ophthalmology, 2019, 126, 856-865.	5.2	44
69	CHOROIDAL THICKNESS AND VASCULARITY VARY WITH DISEASE SEVERITY AND SUBRETINAL DRUSENOID DEPOSIT PRESENCE IN NONADVANCED AGE-RELATED MACULAR DEGENERATION. Retina, 2020, 40, 632-642.	1.7	41
70	Long-term Outcomes of Adding Lutein/Zeaxanthin and ω-3 Fatty Acids to the AREDS Supplements on Age-Related Macular Degeneration Progression. JAMA Ophthalmology, 2022, 140, 692.	2.5	40
71	Subconjunctival sirolimus in the treatment of diabetic macular edema. Graefe's Archive for Clinical and Experimental Ophthalmology, 2011, 249, 1627-33.	1.9	38
72	Longitudinal Analysis of Retinal Hemangioblastomatosis and Visual Function in Ocular von Hippel-Lindau Disease. Ophthalmology, 2012, 119, 2622-2630.	5.2	38

#	Article	IF	CITATIONS
73	Natural History of Drusenoid Pigment Epithelial Detachment Associated with Age-Related Macular Degeneration. Ophthalmology, 2019, 126, 261-273.	5.2	38
74	COMPARISON OF STANDARDIZED CLINICAL CLASSIFICATION WITH FUNDUS PHOTOGRAPH GRADING FOR THE ASSESSMENT OF DIABETIC RETINOPATHY AND DIABETIC MACULAR EDEMA SEVERITY. Retina, 2013, 33, 1393-1399.	1.7	37
75	TREATMENT OF NONNEOVASCULAR IDIOPATHIC MACULAR TELANGIECTASIA TYPE 2 WITH INTRAVITREAL RANIBIZUMAB. Retina, 2012, 32, 996-1006.	1.7	36
76	LONGITUDINAL STRUCTURAL CHANGES IN LATE-ONSET RETINAL DEGENERATION. Retina, 2016, 36, 2348-2356.	1.7	36
77	Vascular Associations and Dynamic Process Motility in Perivascular Myeloid Cells of the Mouse Choroid: Implications for Function and Senescent Change. , 2014, 55, 1787.		35
78	Genotype-Phenotype Correlation in Ocular von Hippel-Lindau (VHL) Disease: The Effect of Missense Mutation Position on Ocular VHL Phenotype. , 2010, 51, 4464.		33
79	Predicting risk of late age-related macular degeneration using deep learning. Npj Digital Medicine, 2020, 3, 111.	10.9	33
80	CSF1R blockade induces macrophage ablation and results in mouse choroidal vascular atrophy and RPE disorganization. ELife, 2020, 9, .	6.0	33
81	Naloxone Ameliorates Retinal Lesions in <i>Ccl2/Cx3cr1</i> Double-Deficient Mice via Modulation of Microglia. , 2011, 52, 2897.		32
82	Microglia in the primate macula: specializations in microglial distribution and morphology with retinal position and with aging. Brain Structure and Function, 2017, 222, 2759-2771.	2.3	31
83	Retinal Vascular Proliferation as an Ocular Manifestation of von Hippel-Lindau Disease. JAMA Ophthalmology, 2008, 126, 637.	2.4	30
84	Retinal vascular repair and neovascularization are not dependent on CX3CR1 signaling in a model of ischemic retinopathy. Experimental Eye Research, 2009, 88, 1004-1013.	2.6	30
85	Proliferative and Survival Effects of PUMA Promote Angiogenesis. Cell Reports, 2012, 2, 1272-1285.	6.4	28
86	Regulation of microglia by ionotropic glutamatergic and GABAergic neurotransmission. Neuron Glia Biology, 2011, 7, 41-46.	1.6	27
87	Light-Dependent OCT Structure Changes in Photoreceptor Degenerative rd 10 Mouse Retina. , 2018, 59, 1084.		27
88	Treatment for atrophic macular degeneration. Current Opinion in Ophthalmology, 2011, 22, 190-193.	2.9	25
89	Drusen Regression is Associated With Local Changes in Fundus Autofluorescence in Intermediate Age-Related Macular Degeneration. American Journal of Ophthalmology, 2013, 156, 532-542.e1.	3.3	25

Wai T Wong

#	Article	IF	CITATIONS
91	Decreased Visual Function Scores on a Low Luminance Questionnaire Is Associated with Impaired Dark Adaptation. Ophthalmology, 2017, 124, 1332-1339.	5.2	23
92	Optical Coherence Tomography Minimum Intensity as an Objective Measure for the Detection of Hydroxychloroquine Toxicity. , 2018, 59, 1953.		23
93	Clinical Course of Retrobulbar Hemangioblastomas in von Hippel–Lindau Disease. Ophthalmology, 2008, 115, 1382-1389.	5.2	22
94	Perivascular Mural Cells of the Mouse Choroid Demonstrate Morphological Diversity That Is Correlated to Vasoregulatory Function. PLoS ONE, 2013, 8, e53386.	2.5	22
95	Photoreceptor protection via blockade of BET epigenetic readers in a murine model of inherited retinal degeneration. Journal of Neuroinflammation, 2017, 14, 14.	7.2	22
96	Relentless Placoid Chorioretinitis Associated With Central Nervous System Lesions Treated With Mycophenolate Mofetil. JAMA Ophthalmology, 2009, 127, 341.	2.4	21
97	Age-related changes of the retinal microvasculature. PLoS ONE, 2019, 14, e0215916.	2.5	20
98	Evolution of Geographic Atrophy in Participants Treated with Ranibizumab for Neovascular Age-Related Macular Degeneration. Ophthalmology Retina, 2017, 1, 34-41.	2.4	19
99	Deep Learning Automated Detection of Reticular Pseudodrusen from Fundus Autofluorescence Images or Color Fundus Photographs in AREDS2. Ophthalmology, 2020, 127, 1674-1687.	5.2	19
100	Macular Thickness in Intermediate Age-Related Macular Degeneration Is Influenced by Disease Severity and Subretinal Drusenoid Deposit Presence. , 2020, 61, 59.		18
101	Deletion of the von Hippel-Lindau Gene in Hemangioblasts Causes Hemangioblastoma-like Lesions in Murine Retina. Cancer Research, 2018, 78, 1266-1274.	0.9	16
102	Systemic Sunitinib Malate Treatment for Advanced Juxtapapillary Retinal Hemangioblastomas Associated with von Hippel-Lindau Disease. Ophthalmology Retina, 2017, 1, 181-187.	2.4	15
103	Innate Immunity in Age-Related Macular Degeneration. Advances in Experimental Medicine and Biology, 2021, 1256, 121-141.	1.6	15
104	PREVALENCE AND PROGRESSION OF PIGMENT CLUMPING ASSOCIATED WITH IDIOPATHIC MACULAR TELANGIECTASIA TYPE 2. Retina, 2013, 33, 762-770.	1.7	14
105	Changes in Lens Opacities on the Age-Related Eye Disease Study Grading Scale Predict Progression to Cataract Surgery and Vision Loss. Ophthalmology, 2015, 122, 888-896.	5.2	11
106	Multimodal, multitask, multiattention (M3) deep learning detection of reticular pseudodrusen: Toward automated and accessible classification of age-related macular degeneration. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1135-1148.	4.4	11
107	Complementary angiographic and autofluorescence findings in pseudoxanthoma elasticum. International Ophthalmology, 2010, 30, 77-79.	1.4	8
108	Local Anatomic Precursors to New-Onset Geographic Atrophy in Age-Related Macular Degeneration as Defined on OCT. Ophthalmology Retina, 2021, 5, 396-408.	2.4	8

Wai T Wong

#	Article	IF	CITATIONS
109	A multi-task deep learning model for the classification of Age-related Macular Degeneration. AMIA Summits on Translational Science Proceedings, 2019, 2019, 505-514.	0.4	8
110	Repeatability of Scotopic Sensitivity and Dark Adaptation Using a Medmont Dark-Adapted Chromatic Perimeter in Age-related Macular Degeneration. Translational Vision Science and Technology, 2020, 9, 31.	2.2	6
111	Machine Learning OCT Predictors of Progression from Intermediate Age-Related Macular Degeneration to Geographic Atrophy and Vision Loss. Ophthalmology Science, 2022, 2, 100160.	2.5	6
112	Oral Dextromethorphan for the Treatment of Diabetic Macular Edema: Results From a Phase I/II Clinical Study. Translational Vision Science and Technology, 2018, 7, 24.	2.2	5
113	Intravitreous treatment of severe ocular von <scp>Hippel–Lindau</scp> disease using a combination of the <scp>VEGF</scp> inhibitor, ranibizumab and <scp>PDGF</scp> inhibitor, <scp>E10030</scp> : Results from a phase 1/2 clinical trial. Clinical and Experimental Ophthalmology, 2021, 49, 1048-1059.	2.6	5
114	Modeling Photo-Bleaching Kinetics to Create High Resolution Maps of Rod Rhodopsin in the Human Retina. PLoS ONE, 2015, 10, e0131881.	2.5	5
115	Image Scaling Difference Between a Confocal Scanning Laser Ophthalmoscope and a Flash Fundus Camera. Ophthalmic Surgery Lasers and Imaging Retina, 2015, 46, 872-879.	0.7	5
116	Fundus Autofluorescence Patterns in Stargardt Disease Over Time—Reply. JAMA Ophthalmology, 2012, 130, 1354.	2.4	3
117	EFFECT OF RANIBIZUMAB ON HIGH-SPEED INDOCYANINE GREEN ANGIOGRAPHY AND MINIMUM INTENSITY PROJECTION OPTICAL COHERENCE TOMOGRAPHY FINDINGS IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION. Retina, 2015, 35, 58-68.	1.7	2
118	Ocular von Hippel-Lindau Disease – clinical characteristics and future directions. Expert Review of Ophthalmology, 2016, 11, 329-337.	0.6	1
119	The microglia response to electrical overstimulation of the retina imaged under a transparent stimulus electrode. Journal of Neural Engineering, 2021, 18, 025003.	3.5	1
120	Foveal Hypoautofluorescence: Does It Correlate to Visual Acuity in White Dot Syndromes?—Reply. JAMA Ophthalmology, 2010, 128, 1629.	2.4	0
121	Gallium scintigraphy in the investigation of retinal inflammatory vasculopathy. Acta Ophthalmologica, 2010, 88, e291-2.	1.1	Ο