Veronique Bergougnoux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7506985/publications.pdf

Version: 2024-02-01

22 papers

923 citations

777949 13 h-index ⁷⁹⁹⁶⁶³
21
g-index

23 all docs 23 docs citations

times ranked

23

1580 citing authors

#	Article	IF	Citations
1	Enhancing cereal productivity by genetic modification of root architecture. Biotechnology Journal, 2022, 17, e2100505.	1.8	4
2	<scp>CROWN ROOTLESS1</scp> binds <scp>DNA</scp> with a relaxed specificity and activates <i>OsROP</i> and <i>OsbHLH044</i> genes involved in crown root formation in rice. Plant Journal, 2022, 111, 546-566.	2.8	7
3	CRISPR/Cas9 genome editing in ergot fungus Claviceps purpurea. Journal of Biotechnology, 2021, 325, 341-354.	1.9	14
4	Proteome Analysis of Condensed Barley Mitotic Chromosomes. Frontiers in Plant Science, 2021, 12, 723674.	1.7	5
5	What Makes Adventitious Roots?. Plants, 2019, 8, 240.	1.6	71
6	Affinity chromatography revealed 14-3-3 interactome of tomato (Solanum lycopersicum L.) during blue light-induced de-etiolation. Journal of Proteomics, 2019, 193, 44-61.	1.2	12
7	Modification of Barley Plant Productivity Through Regulation of Cytokinin Content by Reverse-Genetics Approaches. Frontiers in Plant Science, 2018, 9, 1676.	1.7	79
8	Production and Role of Hormones During Interaction of Fusarium Species With Maize (Zea mays L.) Seedlings. Frontiers in Plant Science, 2018, 9, 1936.	1.7	30
9	To Stimulate or Inhibit? That Is the Question for the Function of Abscisic Acid. Trends in Plant Science, 2017, 22, 830-841.	4.3	64
10	Crown-root development in barley (Hordeum vulgare L.): Molecular and hormonal control. New Biotechnology, 2016, 33, S166.	2.4	0
11	A subtracted cDNA library identifies genes up-regulated during PHOT1-mediated early step of de-etiolation in tomato (Solanum lycopersicum L.). BMC Genomics, 2016, 17, 291.	1.2	6
12	Whole transcriptome analysis of transgenic barley with altered cytokinin homeostasis and increased tolerance to drought stress. New Biotechnology, 2016, 33, 676-691.	2.4	51
13	Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. New Biotechnology, 2016, 33, 692-705.	2.4	117
14	Spatio-temporal changes in endogenous abscisic acid contents during etiolated growth and photomorphogenesis in tomato seedlings. Plant Signaling and Behavior, 2015, 10, e1039213.	1.2	13
15	Endogenous Abscisic Acid Promotes Hypocotyl Growth and Affects Endoreduplication during Dark-Induced Growth in Tomato (Solanum lycopersicum L.). PLoS ONE, 2015, 10, e0117793.	1.1	21
16	AUXIN BINDING PROTEIN 4 is involved in the Ca ²⁺ /auxin-regulated expression of <i>ZCAX3</i> gene in maize (<i>Zea mays</i>). Botany, 2014, 92, 332-339.	0.5	1
17	The history of tomato: From domestication to biopharming. Biotechnology Advances, 2014, 32, 170-189.	6.0	246
18	Maize AUXIN-BINDING PROTEIN 1 and AUXIN-BINDING PROTEIN 4 impact on leaf growth, elongation, and seedling responsiveness to auxin and light. Botany, 2012, 90, 990-1006.	0.5	7

#	Article	IF	CITATIONS
19	Effect of Blue Light on Endogenous Isopentenyladenine and Endoreduplication during Photomorphogenesis and De-Etiolation of Tomato (Solanum lycopersicum L.) Seedlings. PLoS ONE, 2012, 7, e45255.	1.1	16
20	The 7B-1 mutation in tomato (Solanum lycopersicum L.) confers a blue light-specific lower sensitivity to coronatine, a toxin produced by Pseudomonas syringae pv. tomato. Journal of Experimental Botany, 2009, 60, 1219-1230.	2.4	17
21	Light controls shoot meristem organogenic activity and leaf primordia growth during bud burst in <i>Rosa</i> sp Plant, Cell and Environment, 2008, 31, 1534-1544.	2.8	75
22	Role of Petal-Specific Orcinol O-Methyltransferases in the Evolution of Rose Scent. Plant Physiology, 2006, 140, 18-29.	2.3	67