Zhifang Chai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7506652/publications.pdf

Version: 2024-02-01

386 papers 29,827 citations

86 h-index 160 g-index

400 all docs

400 docs citations

400 times ranked

29509 citing authors

#	Article	IF	CITATIONS
1	Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chemical Society Reviews, 2018, 47, 2322-2356.	18.7	1,438
2	Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicology Letters, 2007, 168, 176-185.	0.4	973
3	A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nature Materials, 2020, 19, 894-899.	13.3	870
4	Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16968-16973.	3.3	839
5	Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters, 2006, 163, 109-120.	0.4	825
6	Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. Journal of the American Chemical Society, 2019, 141, 4730-4737.	6.6	811
7	Lightâ€√riggered Assembly of Gold Nanoparticles for Photothermal Therapy and Photoacoustic Imaging of Tumors In Vivo. Advanced Materials, 2017, 29, 1604894.	11.1	444
8	Recent Advances in Design and Fabrication of Upconversion Nanoparticles and Their Safe Theranostic Applications. Advanced Materials, 2013, 25, 3758-3779.	11.1	437
9	Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria. Nature Communications, 2018, 9, 129.	5.8	414
10	Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chemical Engineering Journal, 2012, 210, 539-546.	6.6	402
11	Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology, 2008, 254, 82-90.	2.0	386
12	Identifying the Recognition Site for Selective Trapping of ⁹⁹ TcO ₄ [–] in a Hydrolytically Stable and Radiation Resistant Cationic Metal–Organic Framework. Journal of the American Chemical Society, 2017, 139, 14873-14876.	6.6	386
13	Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere, 2010, 78, 273-279.	4.2	377
14	Synthesis and Electrochemical Properties of Two-Dimensional Hafnium Carbide. ACS Nano, 2017, 11, 3841-3850.	7.3	370
15	Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system. Nature Communications, 2017, 8, 15369.	5.8	366
16	Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. Journal of Nanoparticle Research, 2010, 12, 1645-1654.	0.8	348
17	Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. Journal of Nanoparticle Research, 2008, 10, 263-276.	0.8	338
18	Highly Sensitive and Selective Uranium Detection in Natural Water Systems Using a Luminescent Mesoporous Metal–Organic Framework Equipped with Abundant Lewis Basic Sites: A Combined Batch, X-ray Absorption Spectroscopy, and First Principles Simulation Investigation. Environmental Science & Eamp; Technology, 2017, 51, 3911-3921.	4.6	331

#	Article	IF	Citations
19	Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. Journal of Analytical Atomic Spectrometry, 2006, 21, 94-96.	1.6	322
20	Biotransformation of Ceria Nanoparticles in Cucumber Plants. ACS Nano, 2012, 6, 9943-9950.	7.3	319
21	Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicology Letters, 2008, 183, 72-80.	0.4	310
22	A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants. Nature Communications, 2017, 8, 1354.	5.8	296
23	Multihydroxylated [Gd@C82(OH)22]nNanoparticles:Â Antineoplastic Activity of High Efficiency and Low Toxicity. Nano Letters, 2005, 5, 2050-2057.	4.5	281
24	Interaction mechanism of uranium(VI) with three-dimensional graphene oxide-chitosan composite: Insights from batch experiments, IR, XPS, and EXAFS spectroscopy. Chemical Engineering Journal, 2017, 328, 1066-1074.	6.6	266
25	Ultrafast and Efficient Extraction of Uranium from Seawater Using an Amidoxime Appended Metal–Organic Framework. ACS Applied Materials & Interfaces, 2017, 9, 32446-32451.	4.0	260
26	Nano-CeO ₂ Exhibits Adverse Effects at Environmental Relevant Concentrations. Environmental Science & Environmental	4.6	257
27	BSAâ€Mediated Synthesis of Bismuth Sulfide Nanotheranostic Agents for Tumor Multimodal Imaging and Thermoradiotherapy. Advanced Functional Materials, 2016, 26, 5335-5344.	7.8	255
28	Efficient U(VI) Reduction and Sequestration by Ti ₂ CT _{<i>x</i>} MXene. Environmental Science & Environmenta	4.6	253
29	Facet Energy <i>versus </i> Enzyme-like Activities: The Unexpected Protection of Palladium Nanocrystals against Oxidative Damage. ACS Nano, 2016, 10, 10436-10445.	7.3	247
30	Protein Corona Influences Cellular Uptake of Gold Nanoparticles by Phagocytic and Nonphagocytic Cells in a Size-Dependent Manner. ACS Applied Materials & Size-Dependent & Siz	4.0	243
31	Broadâ€ S pectrum Antibacterial Activity of Carbon Nanotubes to Human Gut Bacteria. Small, 2013, 9, 2735-2746.	5.2	236
32	Ultrasmall Biocompatible WO _{3â^²} <i>_x</i> Nanodots for Multiâ€Modality Imaging and Combined Therapy of Cancers. Advanced Materials, 2016, 28, 5072-5079.	11.1	227
33	Hydrolytically Stable Luminescent Cationic Metal Organic Framework for Highly Sensitive and Selective Sensing of Chromate Anions in Natural Water Systems. ACS Applied Materials & Samp; Interfaces, 2017, 9, 16448-16457.	4.0	223
34	Are carbon nanotubes safe?. Nature Nanotechnology, 2008, 3, 191-192.	15.6	215
35	Loading Actinides in Multilayered Structures for Nuclear Waste Treatment: The First Case Study of Uranium Capture with Vanadium Carbide MXene. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16396-16403.	4.0	214
36	Highly Sensitive Detection of Ionizing Radiations by a Photoluminescent Uranyl Organic Framework. Angewandte Chemie - International Edition, 2017, 56, 7500-7504.	7.2	214

#	Article	IF	Citations
37	Full Assessment of Fate and Physiological Behavior of Quantum Dots Utilizing <i>Caenorhabditis elegans</i> as a Model Organism. Nano Letters, 2011, 11, 3174-3183.	4.5	212
38	Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chemical Communications, 2017, 53, 12084-12087.	2.2	198
39	Emergence of Uranium as a Distinct Metal Center for Building Intrinsic Xâ€ray Scintillators. Angewandte Chemie - International Edition, 2018, 57, 7883-7887.	7.2	198
40	Crossover between Anti- and Pro-oxidant Activities of Graphene Quantum Dots in the Absence or Presence of Light. ACS Nano, 2016, 10, 8690-8699.	7.3	188
41	Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC–ICP-MS. Talanta, 2007, 71, 2034-2039.	2.9	184
42	Halogenated Ti ₃ C ₂ MXenes with Electrochemically Active Terminals for High-Performance Zinc Ion Batteries. ACS Nano, 2021, 15, 1077-1085.	7.3	183
43	Exceptional Perrhenate/Pertechnetate Uptake and Subsequent Immobilization by a Low-Dimensional Cationic Coordination Polymer: Overcoming the Hofmeister Bias Selectivity. Environmental Science and Technology Letters, 2017, 4, 316-322.	3.9	181
44	Mechanism unravelling for ultrafast and selective ⁹⁹ TcO ₄ ^{â^'} uptake by a radiation-resistant cationic covalent organic framework: a combined radiological experiment and molecular dynamics simulation study. Chemical Science, 2019, 10, 4293-4305.	3.7	181
45	Acquired Superoxideâ€Scavenging Ability of Ceria Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 1832-1835.	7.2	179
46	Phase Transition Induced Unusual Electrochemical Performance of V ₂ CT _X MXene for Aqueous Zinc Hybrid-Ion Battery. ACS Nano, 2020, 14, 541-551.	7.3	179
47	The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF- $\hat{l}\pm$ mediated cellular immunity. Biomaterials, 2009, 30, 3934-3945.	5.7	177
48	Defect engineering in metal–organic frameworks: a new strategy to develop applicable actinide sorbents. Chemical Communications, 2018, 54, 370-373.	2.2	167
49	Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets. Journal of Hazardous Materials, 2020, 396, 122731.	6.5	166
50	The Roles of Serum Selenium and Selenoproteins on Mercury Toxicity in Environmental and Occupational Exposure. Environmental Health Perspectives, 2006, 114, 297-301.	2.8	163
51	Effective Removal of Anionic Re(VII) by Surface-Modified Ti ₂ CT _{<i>x</i>} MXene Nanocomposites: Implications for Tc(VII) Sequestration. Environmental Science & Environmental Scien	4.6	163
52	Comparative toxicity of nanoparticulate/bulk Yb ₂ O ₃ and YbCl ₃ to cucumber (<i>Cucumis sativus</i>). Environmental Science & Environmental Scie	4.6	153
53	Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. Biochemical Pharmacology, 2006, 71, 872-881.	2.0	152
54	Phytotoxicity and biotransformation of La ₂ O ₃ nanoparticles in a terrestrial plant cucumber (<i>Cucumis sativus</i>). Nanotoxicology, 2011, 5, 743-753.	1.6	151

#	Article	IF	Citations
55	Potent Angiogenesis Inhibition by the Particulate Form of Fullerene Derivatives. ACS Nano, 2010, 4, 2773-2783.	7.3	148
56	Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle. Acta Biomaterialia, 2015, 17, 201-209.	4.1	145
57	Neurotoxicological consequence of long-term exposure to lanthanum. Toxicology Letters, 2006, 165, 112-120.	0.4	140
58	Influences of Structural Properties on Stability of Fullerenols. Journal of Physical Chemistry B, 2004, 108, 11473-11479.	1.2	139
59	The effects of orally administered Ag, TiO 2 and SiO 2 nanoparticles on gut microbiota composition and colitis induction in mice. NanoImpact, 2017, 8, 80-88.	2.4	139
60	Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation. Nanotechnology, 2010, 21, 285103.	1.3	137
61	Covalent Organic Framework Functionalized with 8-Hydroxyquinoline as a Dual-Mode Fluorescent and Colorimetric pH Sensor. ACS Applied Materials & Samp; Interfaces, 2018, 10, 15364-15368.	4.0	136
62	Towards understanding of nanoparticle–protein corona. Archives of Toxicology, 2015, 89, 519-539.	1.9	135
63	Physicochemical Origin for Free Radical Generation of Iron Oxide Nanoparticles in Biomicroenvironment: Catalytic Activities Mediated by Surface Chemical States. Journal of Physical Chemistry C, 2013, 117, 383-392.	1.5	131
64	Light-Enhanced Antibacterial Activity of Graphene Oxide, Mainly via Accelerated Electron Transfer. Environmental Science & Env	4.6	131
65	Quantitative Analysis of Metal Impurities in Carbon Nanotubes: Efficacy of Different Pretreatment Protocols for ICPMS Spectroscopy. Analytical Chemistry, 2008, 80, 9426-9434.	3.2	125
66	Rare earth separations by selective borate crystallization. Nature Communications, 2017, 8, 14438.	5.8	125
67	Age-Related Differences in Pulmonary and Cardiovascular Responses to SiO ₂ Nanoparticle Inhalation: Nanotoxicity Has Susceptible Population. Environmental Science &	4.6	124
68	Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology, 2015, 9, 262-270.	1.6	123
69	Aryl Diazonium-Assisted Amidoximation of MXene for Boosting Water Stability and Uranyl Sequestration via Electrochemical Sorption. ACS Applied Materials & Samp; Interfaces, 2020, 12, 15579-15587.	4.0	115
70	Increased Oxidative DNA Damage, as Assessed by Urinary 8-Hydroxy-2′-Deoxyguanosine Concentrations, and Serum Redox Status in Persons Exposed to Mercury. Clinical Chemistry, 2005, 51, 759-767.	1.5	113
71	Recent advances in computational actinoid chemistry. Chemical Society Reviews, 2012, 41, 5836.	18.7	113
72	Ultrasmall [⁶⁴ Cu]Cu Nanoclusters for Targeting Orthotopic Lung Tumors Using Accurate Positron Emission Tomography Imaging. ACS Nano, 2015, 9, 4976-4986.	7.3	108

#	Article	IF	Citations
73	Neurotoxicological Evaluation of Long-Term Lanthanum Chloride Exposure in Rats. Toxicological Sciences, 2008, 103, 354-361.	1.4	106
74	Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology. Chemical Society Reviews, 2013, 42, 8266.	18.7	104
75	The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis. Nanotechnology, 2008, 19, 145102.	1.3	103
76	Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice. Journal of Nanoparticle Research, 2009, 11, 41-53.	0.8	101
77	Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: imprisoning instead of poisoning cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 136-146.	1.7	101
78	Task-Specific Tailored Cationic Polymeric Network with High Base-Resistance for Unprecedented ⁹⁹ TcO ₄ [–] Cleanup from Alkaline Nuclear Waste. ACS Central Science, 2021, 7, 1441-1450.	5. 3	101
79	Peptide-Conjugated Gold Nanoprobe: Intrinsic Nanozyme-Linked Immunsorbant Assay of Integrin Expression Level on Cell Membrane. ACS Nano, 2015, 9, 10979-10990.	7.3	99
80	Xylem and Phloem Based Transport of CeO ₂ Nanoparticles in Hydroponic Cucumber Plants. Environmental Science & Echnology, 2017, 51, 5215-5221.	4.6	97
81	Immunostimulatory properties and enhanced TNF- α mediated cellular immunity for tumor therapy by C ₆₀ (OH) ₂₀ nanoparticles. Nanotechnology, 2009, 20, 415102.	1.3	96
82	Toxicity of inorganic nanomaterials in biomedical imaging. Biotechnology Advances, 2014, 32, 727-743.	6.0	94
83	pHâ€Responsive Fe(III)–Gallic Acid Nanoparticles for In Vivo Photoacousticâ€Imagingâ€Guided Photothermal Therapy. Advanced Healthcare Materials, 2016, 5, 772-780.	3.9	94
84	A high efficient sorption of U(VI) from aqueous solution using amino-functionalized SBA-15. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292, 803-810.	0.7	92
85	Light-Triggered PEGylation/dePEGylation of the Nanocarriers for Enhanced Tumor Penetration. Nano Letters, 2019, 19, 3671-3675.	4.5	92
86	Vacancies on 2D transition metal dichalcogenides elicit ferroptotic cell death. Nature Communications, 2020, 11, 3484.	5.8	90
87	Electron Beam Irradiation as a General Approach for the Rapid Synthesis of Covalent Organic Frameworks under Ambient Conditions. Journal of the American Chemical Society, 2020, 142, 9169-9174.	6.6	90
88	Three-Dimensional Polycatenation of a Uranium-Based Metal–Organic Cage: Structural Complexity and Radiation Detection. Journal of the American Chemical Society, 2020, 142, 16218-16222.	6.6	89
89	New Insight into GO, Cadmium(II), Phosphate Interaction and Its Role in GO Colloidal Behavior. Environmental Science & Environ	4.6	85
90	Transformation of ceria nanoparticles in cucumber plants is influenced by phosphate. Environmental Pollution, 2015, 198, 8-14.	3.7	84

#	Article	IF	CITATIONS
91	Palladium concave nanocrystals with high-index facets accelerate ascorbate oxidation in cancer treatment. Nature Communications, 2018, 9, 4861.	5.8	84
92	Multielemental single–atom-thick <i>A</i> layers in nanolaminated V ₂ (Sn, <i>A</i>) C () Tj ETQq Sciences of the United States of America, 2020, 117, 820-825.	0 0 0 rgBT 3.3	/Overlock : 84
93	Comparison Study on the Antibacterial Activity of Nano- or Bulk-Cerium Oxide. Journal of Nanoscience and Nanotechnology, 2011, 11, 4103-4108.	0.9	83
94	Where Does the Transformation of Precipitated Ceria Nanoparticles in Hydroponic Plants Take Place?. Environmental Science & En	4.6	82
95	Human hair as a potential biomonitor for assessing persistent organic pollutants. Environment International, 2007, 33, 685-693.	4.8	80
96	Quantitative Analysis of Proteins via Sulfur Determination by HPLC Coupled to Isotope Dilution ICPMS with a Hexapole Collision Cell. Analytical Chemistry, 2007, 79, 9128-9134.	3.2	77
97	D-arginine-loaded metal-organic frameworks nanoparticles sensitize osteosarcoma to radiotherapy. Biomaterials, 2021, 269, 120642.	5.7	77
98	Concentration characteristics of extractable organohalogens in PM2.5 and PM10 in Beijing, China. Atmospheric Environment, 2005, 39, 4119-4128.	1.9	76
99	Organic Selenium Supplementation Increases Mercury Excretion and Decreases Oxidative Damage in Long-Term Mercury-Exposed Residents from Wanshan, China. Environmental Science & Long; Technology, 2012, 46, 11313-11318.	4.6	76
100	Time-resolved ICP-MS analysis of mineral element contents and distribution patterns in single cells. Analyst, The, 2015, 140, 523-531.	1.7	76
101	ZnO nanoparticles act as supportive therapy in DSS-induced ulcerative colitis in mice by maintaining gut homeostasis and activating Nrf2 signaling. Scientific Reports, 2017, 7, 43126.	1.6	76
102	Mapping technique for biodistribution of elements in a model organism, Caenorhabditis elegans, after exposure to copper nanoparticles with microbeam synchrotron radiation X-ray fluorescence. Journal of Analytical Atomic Spectrometry, 2008, 23, 1121.	1.6	75
103	Effects of Copper Nanoparticles on the Development of Zebrafish Embryos. Journal of Nanoscience and Nanotechnology, 2010, 10, 8670-8676.	0.9	75
104	mTOR Signaling in Parkinson's Disease. NeuroMolecular Medicine, 2017, 19, 1-10.	1.8	74
105	Mesoporous silica SBA-15 functionalized with phosphonate and amino groups for uranium uptake. Science China Chemistry, 2012, 55, 1705-1711.	4.2	73
106	Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum). Environmental Research, 2013, 125, 75-81.	3.7	73
107	The influence of iron plaque on the absorption, translocation and transformation of mercury in rice (Oryza sativa L.) seedlings exposed to different mercury species. Plant and Soil, 2016, 398, 87-97.	1.8	73
108	Potential Health Impact on Mice after Nasal Instillation of Nano-Sized Copper Particles and Their Translocation in Mice. Journal of Nanoscience and Nanotechnology, 2009, 9, 6335-6343.	0.9	72

#	Article	IF	CITATIONS
109	Distribution of some rare earth elements and their binding species with proteins in human liver studied by instrumental neutron activation analysis combined with biochemical techniques. Analytica Chimica Acta, 2001, 439, 19-27.	2.6	68
110	Size- and surface chemistry-dependent pharmacokinetics and tumor accumulation of engineered gold nanoparticles after intravenous administration. Metallomics, 2015, 7, 516-524.	1.0	68
111	Graphene Oxide Nanosheets Retard Cellular Migration via Disruption of Actin Cytoskeleton. Small, 2017, 13, 1602133.	5.2	68
112	Long-term effects of lanthanum intake on the neurobehavioral development of the rat. Neurotoxicology and Teratology, 2006, 28, 119-124.	1.2	67
113	Integrative approach for the analysis of the proteome-wide response to bismuth drugs in Helicobacter pylori. Chemical Science, 2017, 8, 4626-4633.	3.7	66
114	Effects of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos. Journal of Environmental Sciences, 2012, 24, 209-213.	3.2	65
115	Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.), in correlation with mercury species and exposure level. Metallomics, 2014, 6, 1951-1957.	1.0	64
116	Near-Infrared Light-Triggered Switchable Nanoparticles for Targeted Chemo/Photothermal Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 15103-15112.	4.0	61
117	Adsorption and desorption characteristics of arsenic onto ceria nanoparticles. Nanoscale Research Letters, 2012, 7, 84.	3.1	60
118	A thermoresponsive nanocarrier for mitochondria-targeted drug delivery. Chemical Communications, 2019, 55, 4051-4054.	2.2	60
119	Au Clusters Treat Rheumatoid Arthritis with Uniquely Reversing Cartilage/Bone Destruction. Advanced Science, 2019, 6, 1801671.	5.6	60
120	Single-Atom-Thick Active Layers Realized in Nanolaminated Ti ₃ (Al _{<i>x</i>} Cu _{1â€"<i>x</i>})C ₂ and Its Artificial Enzyme Behavior. ACS Nano, 2019, 13, 9198-9205.	7.3	59
121	Highly selective extraction of Pu (IV) and Am (III) by N,N′-diethyl-N,N′-ditolyl-2,9-diamide-1,10-phenanthroline ligand: An experimental and theoretical study. Separation and Purification Technology, 2019, 223, 274-281.	3.9	59
122	Surface chemistry governs the sub-organ transfer, clearance and toxicity of functional gold nanoparticles in the liver and kidney. Journal of Nanobiotechnology, 2020, 18, 45.	4.2	59
123	Blue two-photon fluorescence metal cluster probe precisely marking cell nuclei of two cell lines. Chemical Communications, 2013, 49, 10724.	2.2	58
124	Synthesis of MAX phases Nb ₂ CuC and Ti ₂ (Al _{0.1} Cu _{0.9})N by A-site replacement reaction in molten salts. Materials Research Letters, 2019, 7, 510-516.	4.1	58
125	Understanding Enhanced Microbial MeHg Production in Mining-Contaminated Paddy Soils under Sulfate Amendment: Changes in Hg Mobility or Microbial Methylators?. Environmental Science & Encirology, 2019, 53, 1844-1852.	4.6	58
126	Emergence of a Radicalâ€Stabilizing Metalâ€"Organic Framework as a Radioâ€photoluminescence Dosimeter. Angewandte Chemie - International Edition, 2020, 59, 15209-15214.	7.2	56

#	Article	IF	CITATIONS
127	Advanced nuclear analytical techniques for metalloproteomics. Journal of Analytical Atomic Spectrometry, 2007, 22, 856.	1.6	55
128	Facile Approach To Observe and Quantify the \hat{l}_{\pm} _{lb/sub>la2₃ Integrin on a Single-Cell. Analytical Chemistry, 2015, 87, 2546-2549.}	3.2	53
129	Heteroaggregation behavior of graphene oxide on Zr-based metal–organic frameworks in aqueous solutions: a combined experimental and theoretical study. Journal of Materials Chemistry A, 2017, 5, 20398-20406.	5.2	53
130	Competition/Cooperation between Humic Acid and Graphene Oxide in Uranyl Adsorption Implicated by Molecular Dynamics Simulations. Environmental Science & Technology, 2019, 53, 5102-5110.	4.6	53
131	Precise recognition of palladium through interlaminar chelation in a covalent organic framework. CheM, 2022, 8, 1442-1459.	5.8	53
132	A new solvent system containing N,N \hat{a} e²-diethyl-N,N \hat{a} e²-ditolyl-2,9-diamide-1,10-phenanthroline in 1-(trifluoromethyl)-3-nitrobenzene for highly selective UO 2 2+ extraction. Separation and Purification Technology, 2016, 168, 232-237.	3.9	52
133	Highly Sensitive Detection of UV Radiation Using a Uranium Coordination Polymer. ACS Applied Materials & Company (1988) Materials	4.0	52
134	Detection of metalloproteins in human liver cytosol by synchrotron radiation X-ray fluorescence after sodium dodecyl sulphate polyacrylamide gel electrophoresis. Analytica Chimica Acta, 2003, 485, 131-137.	2.6	51
135	The Strong MRI Relaxivity of Paramagnetic Nanoparticles. Journal of Physical Chemistry B, 2008, 112, 6288-6291.	1.2	51
136	Simultaneous speciation of selenium and mercury in human urine samples from long-term mercury-exposed populations with supplementation of selenium-enriched yeast by HPLC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2007, 22, 925.	1.6	50
137	Design and synthesis of a chiral uranium-based microporous metal organic framework with high SHG efficiency and sequestration potential for low-valent actinides. Dalton Transactions, 2015, 44, 18810-18814.	1.6	49
138	Trophic Transfer and Transformation of CeO ₂ Nanoparticles along a Terrestrial Food Chain: Influence of Exposure Routes. Environmental Science & Exposure Routes. Environmental Route	4.6	49
139	Tuning the Electrical Conductivity of Ti ₂ CO ₂ MXene by Varying the Layer Thickness and Applying Strains. Journal of Physical Chemistry C, 2019, 123, 6802-6811.	1.5	49
140	The distribution profile and oxidation states of biometals in APP transgenic mouse brain: dyshomeostasis with age and as a function of the development of Alzheimer's disease. Metallomics, 2012, 4, 289.	1.0	48
141	Solvent extraction of U(VI) by trioctylphosphine oxide using a room-temperature ionic liquid. Science China Chemistry, 2014, 57, 1432-1438.	4.2	48
142	Label-Free Au Cluster Used for in Vivo 2D and 3D Computed Tomography of Murine Kidneys. Analytical Chemistry, 2015, 87, 343-345.	3.2	48
143	A Porous Aromatic Framework Functionalized with Luminescent Iridium(III) Organometallic Complexes for Turn-On Sensing of ⁹⁹ TcO ₄ [–] . ACS Applied Materials & Interfaces, 2020, 12, 15288-15297.	4.0	46
144	Levels of Extractable Organohalogens in Pine Needles in China. Environmental Science & Emp; Technology, 2003, 37, 1-6.	4.6	45

#	Article	IF	Citations
145	Organohalogenated compounds in pine needles from Beijing city, China. Chemosphere, 2004, 57, 1343-1353.	4.2	45
146	Interrogating the variation of element masses and distribution patterns in single cells using ICP-MS with a high efficiency cell introduction system. Analytical and Bioanalytical Chemistry, 2017, 409, 1415-1423.	1.9	45
147	Influence of Surface Charge on the Phytotoxicity, Transformation, and Translocation of CeO ₂ Nanoparticles in Cucumber Plants. ACS Applied Materials & Diterfaces, 2019, 11, 16905-16913.	4.0	45
148	Accumulation of mercury, selenium and their binding proteins in porcine kidney and liver from mercury-exposed areas with the investigation of their redox responses. Science of the Total Environment, 2006, 366, 627-637.	3.9	44
149	Comparative Pulmonary Toxicity of Two Ceria Nanoparticles with the Same Primary Size. International Journal of Molecular Sciences, 2014, 15, 6072-6085.	1.8	44
150	Synthesis and characterization of novel macroporous silica-polymer-calixcrown hybrid supramolecular recognition materials for effective separation of cesium. Journal of Hazardous Materials, 2014, 267, 109-118.	6.5	44
151	Layered structure-based materials: challenges and opportunities for radionuclide sequestration. Environmental Science: Nano, 2020, 7, 724-752.	2.2	44
152	Serum and urine chromium concentrations in elderly diabetics. Biological Trace Element Research, 1998, 63, 231-237.	1.9	43
153	Regional distribution of organochlorinated pesticides in pine needles and its indication for socioeconomic development. Chemosphere, 2004, 54, 743-752.	4.2	43
154	Scalp hair as a biomarker in environmental and occupational mercury exposed populations: Suitable or not?. Environmental Research, 2008, 107, 39-44.	3.7	43
155	Oral magnetite nanoparticles disturb the development of <i>Drosophila melanogaster </i> from oogenesis to adult emergence. Nanotoxicology, 2015, 9, 302-312.	1.6	43
156	Ecotoxicological assessment of lanthanum with Caenorhabditis elegans in liquid medium. Metallomics, 2010, 2, 806.	1.0	42
157	Subcellular distribution of selenium and Se-containing proteins in human liver. Biochimica Et Biophysica Acta - General Subjects, 1999, 1427, 205-215.	1.1	41
158	Coordination of Eu(III) with 1,10-Phenanthroline-2,9-dicarboxamide Derivatives: A Combined Study by MS, TRLIF, and DFT. Inorganic Chemistry, 2019, 58, 10239-10247.	1.9	41
159	Acute Oral Administration of Singleâ€Walled Carbon Nanotubes Increases Intestinal Permeability and Inflammatory Responses: Association with the Changes in Gut Microbiota in Mice. Advanced Healthcare Materials, 2018, 7, e1701313.	3.9	40
160	SPEC: A New Process for Strontium and Cesium Partitioning Utilizing Two Macroporous Silica-Based Supramolecular Recognition Agents Impregnated Polymeric Composites. Separation Science and Technology, 2009, 44, 2146-2168.	1.3	39
161	Significance and Systematic Analysis of Metallic Impurities of Carbon Nanotubes Produced by Different Manufacturers. Journal of Nanoscience and Nanotechnology, 2011, 11, 2389-2397.	0.9	39
162	Direct separation of uranium from lanthanides (La, Nd, Ce, Sm) in oxide mixture in LiCl-KCl eutectic melt. Electrochimica Acta, 2018, 275, 100-109.	2.6	39

#	Article	IF	Citations
163	Highly Selective and Simple Synthesis of C2mâ^'Xâ^'C2nFullerene Dimers. Journal of the American Chemical Society, 2004, 126, 11134-11135.	6.6	38
164	Tuning Electronic Properties of Metallic Atom in Bondage to a Nanospace. Journal of Physical Chemistry B, 2005, 109, 8779-8785.	1.2	38
165	Metallomics insights for in vivo studies of metal based nanomaterials. Metallomics, 2013, 5, 793.	1.0	37
166	Nanometallomics: an emerging field studying the biological effects of metal-related nanomaterials. Metallomics, 2014, 6, 220.	1.0	37
167	Electrochemical and Thermodynamic Properties of Uranium on the Liquid Bismuth Electrode in LiCl-KCl Eutectic. Journal of the Electrochemical Society, 2018, 165, D722-D730.	1.3	37
168	The Application of Stimuli-responsive Nanocarriers for Targeted Drug Delivery. Current Topics in Medicinal Chemistry, 2017, 17, 2319-2334.	1.0	36
169	Levels and speciation of arsenic in the atmosphere in Beijing, China. Chemosphere, 2012, 87, 845-850.	4.2	35
170	Visibleâ€Lightâ€Enabled Câ^'H Functionalization by a Direct Hydrogen Atom Transfer Uranyl Photocatalyst. Chemistry - A European Journal, 2020, 26, 16521-16529.	1.7	35
171	Understanding the Effect of pH on the Solubility and Aggregation Extent of Humic Acid in Solution by Combining Simulation and the Experiment. Environmental Science & Experiment. Environmental Science & Experiment. Environmental Science & Experiment. Environmental Science & Experiment.	4.6	35
172	Dynamics of Humic Acid and Its Interaction with Uranyl in the Presence of Hydrophobic Surface Implicated by Molecular Dynamics Simulations. Environmental Science & Environmental Science, 11121-11128.	4.6	34
173	Turning On/Off the Anti-Tumor Effect of the Au Cluster via Atomically Controlling Its Molecular Size. ACS Nano, 2018, 12, 4378-4386.	7.3	34
174	Furin Enzyme and pH Synergistically Triggered Aggregation of Gold Nanoparticles for Activated Photoacoustic Imaging and Photothermal Therapy of Tumors. Analytical Chemistry, 2021, 93, 9277-9285.	3.2	34
175	Detection of metalloproteins in human liver cytosol by synchrotron radiation X-ray fluorescence combined with gel filtration chromatography and isoelectric focusing separation. Analyst, The, 2002, 127, 1700-1704.	1.7	33
176	Modification of a novel macroporous silica-based crown ether impregnated polymeric composite with 1-dodecanol and its adsorption for some fission and non-fission products contained in high level liquid waste. European Polymer Journal, 2008, 44, 3899-3907.	2.6	33
177	Metallomics, elementomics, and analytical techniques. Pure and Applied Chemistry, 2008, 80, 2577-2594.	0.9	33
178	Adsorption Property of Cesium onto Modified Macroporous Silica–Calix[4]arene-crown Based Supramolecular Recognition Materials. Industrial & Engineering Chemistry Research, 2012, 51, 6196-6204.	1.8	33
179	Towards understanding the correlation between UO22+ extraction and substitute groups in 2,9-diamide-1,10-phenanthroline. Science China Chemistry, 2018, 61, 1285-1292.	4.2	33
180	Distribution of ytterbium-169 in rat brain after intravenous injection. Toxicology Letters, 2005, 155, 247-252.	0.4	32

#	Article	IF	CITATIONS
181	Separation of strontium ions from a simulated highly active liquid waste using a composite of silicaâ€crown ether in a polymer. Journal of Separation Science, 2008, 31, 3148-3155.	1.3	32
182	New methods for nanotoxicology: synchrotron radiation-based techniques. Analytical and Bioanalytical Chemistry, 2010, 398, 667-676.	1.9	32
183	Iron-induced generation of mitochondrial ROS depends on AMPK activity. BioMetals, 2017, 30, 623-628.	1.8	32
184	Emergence of Uranium as a Distinct Metal Center for Building Intrinsic Xâ€ray Scintillators. Angewandte Chemie, 2018, 130, 8009-8013.	1.6	32
185	Mercury and trace element distribution in organic tissues and regional brain of fetal rat after in utero and weaning exposure to low dose of inorganic mercury. Toxicology Letters, 2004, 152, 223-234.	0.4	30
186	Chromatographic separation of cesium by a macroporous silica-based supramolecular recognition agent impregnated material. Separation and Purification Technology, 2009, 66, 541-548.	3.9	30
187	Changing exposure media can reverse the cytotoxicity of ceria nanoparticles for <i>Escherichia coli </i>	1.6	30
188	Comparative metalloproteomic approaches for the investigation proteins involved in the toxicity of inorganic and organic forms of mercury in rice (Oryza sativa L.) roots. Metallomics, 2016, 8, 663-671.	1.0	30
189	Deuterated Covalent Organic Frameworks with Significantly Enhanced Luminescence. Angewandte Chemie - International Edition, 2021, 60, 21250-21255.	7.2	30
190	Theoretical studies on the complexation of Eu(III) and Am(III) with HDEHP: structure, bonding nature and stability. Science China Chemistry, 2016, 59, 324-331.	4.2	29
191	The Precise Diagnosis of Cancer Invasion/Metastasis <i>via</i> 2D Laser Ablation Mass Mapping of Metalloproteinase in Primary Cancer Tissue. ACS Nano, 2018, 12, 11139-11151.	7.3	29
192	Biomineralized Enzyme-Like Cobalt Sulfide Nanodots for Synergetic Phototherapy with Tumor Multimodal Imaging Navigation. ACS Sustainable Chemistry and Engineering, 2018, 6, 12061-12069.	3.2	29
193	Thermodynamics and Kinetics Properties of Lanthanides (La, Ce, Pr, Nd) on Liquid Bismuth Electrode in LiCl-KCl Molten Salt. Journal of the Electrochemical Society, 2020, 167, 122507.	1.3	29
194	Mercury modulates selenium activity via altering its accumulation and speciation in garlic (Allium) Tj ETQq0 0 0	rgBT/Over	rlock $10\mathrm{Tf}50$
195	Probing the interaction at nano-bio interface using synchrotron radiation-based analytical techniques. Science China Chemistry, 2015, 58, 768-779.	4.2	28
196	Immobilization of mercury by nano-elemental selenium and the underlying mechanisms in hydroponic-cultured garlic plant. Environmental Science: Nano, 2020, 7, 1115-1125.	2.2	28
197	<i>In Vivo</i> Uranium Decorporation by a Tailor-Made Hexadentate Ligand. Journal of the American Chemical Society, 2022, 144, 11054-11058.	6.6	28
198	Study of chromium-containing proteins in subcellular fractions of rat liver by enriched stable isotopic tracer technique and gel filtration chromatography. Analytical and Bioanalytical Chemistry, 2003, 375, 363-368.	1.9	27

#	Article	IF	Citations
199	Protein corona influences liver accumulation and hepatotoxicity of gold nanorods. NanoImpact, 2016, 3-4, 40-46.	2.4	27
200	Study of Trace Elements in Blood of Thyroid Disorder Subjects Before and After ¹³¹ I Therapy. Biological Trace Element Research, 2004, 97, 125-134.	1.9	26
201	Electrochemical and Thermodynamic Properties of Pr on the Liquid Bi Electrode in LiCl-KCl Eutectic Melt. Journal of the Electrochemical Society, 2018, 165, D452-D460.	1.3	26
202	Ytterbium and trace element distribution in brain and organic tissues of offspring rats after prenatal and postnatal exposure to ytterbium. Biological Trace Element Research, 2007, 117, 89-104.	1.9	25
203	Multielemental contents of foodstuffs from the Wanshan (China) mercury mining area and the potential health risks. Applied Geochemistry, 2011, 26, 182-187.	1.4	25
204	Essential role of AKT in tumor cells addicted to FGFR. Anti-Cancer Drugs, 2014, 25, 183-188.	0.7	25
205	Quantifying the total ionic release from nanoparticles after particle-cell contact. Environmental Pollution, 2015, 196, 194-200.	3.7	25
206	Facile construction of mitochondria-targeting nanoparticles for enhanced phototherapeutic effects. Biomaterials Science, 2017, 5, 1022-1031.	2.6	25
207	2001 survey of organochlorine pesticides in retail milk from Beijing, P. R. China. Food Additives and Contaminants, 2003, 20, 254-258.	2.0	24
208	Synthesis of a Novel Macroporous Silica-Calix[4] arene-Crown Polymeric Composite and Its Adsorption for Alkali Metals and Alkaline-Earth Metals. Industrial & Engineering Chemistry Research, 2010, 49, 2047-2054.	1.8	24
209	Spatially marking and quantitatively counting membrane immunoglobulin M in live cells via Ag cluster–aptamer probes. Chemical Communications, 2014, 50, 3560.	2.2	24
210	Thermoresponsive drug delivery to mitochondria <i>in vivo</i> . Chemical Communications, 2019, 55, 14645-14648.	2.2	24
211	Mitochondrial temperature-responsive drug delivery reverses drug resistance in lung cancer. Bioactive Materials, 2022, 13, 191-199.	8.6	24
212	Use of the enriched stable isotope Cr-50 as a tracer to study the metabolism of chromium (III) in normal and diabetic rats. Biological Trace Element Research, 1998, 63, 129-138.	1.9	23
213	Speciation and subcellular location of Se-containing proteins in human liver studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and hydride generation-atomic fluorescence spectrometric detection. Analytical and Bioanalytical Chemistry, 2002, 372, 426-430.	1.9	23
214	Synthesis of a macroporous silicaâ€based derivative of pyridine material and its application in separation of palladium. AICHE Journal, 2010, 56, 3074-3083.	1.8	23
215	Adsorption of uranyl on hydroxylated \hat{l} ±-SiO ₂ (001): a first-principle study. Dalton Transactions, 2015, 44, 1646-1654.	1.6	23
216	Atypical temperature-dependence of symmetry transformation observed in a uranyl phosphonate. Dalton Transactions, 2016, 45, 9031-9035.	1.6	23

#	Article	IF	Citations
217	Electrochemical Lithium Storage Performance of Molten Salt Derived V2SnC MAX Phase. Nano-Micro Letters, 2021, 13, 158.	14.4	23
218	Direct measurement of lanthanum uptake and distribution in internodal cells of Chara. Plant Science, 2008, 174, 496-501.	1.7	22
219	Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser. Scientific Reports, 2016, 6, 34008.	1.6	22
220	A thiol fluorescent probe reveals the intricate modulation of cysteine's reactivity by Cu(II). Talanta, 2016, 146, 477-482.	2.9	21
221	Gold Nanoparticle-Based Probe for Analyzing Mitochondrial Temperature in Living Cells. ACS Applied Bio Materials, 2019, 2, 3178-3182.	2.3	21
222	Emerging investigator series: significantly enhanced uptake of Eu ³⁺ on a nanoporous zeolitic mineral in the presence of UO ₂ ²⁺ : insights into the impact of cation–cation interaction on the geochemical behavior of lanthanides and actinides. Environmental Science: Nano, 2019, 6, 736-746.	2.2	21
223	Overview of the methodology of nuclear analytical techniques for speciation studies of trace elements in the biological and environmental sciences. Analytical and Bioanalytical Chemistry, 2002, 372, 407-411.	1.9	20
224	Investigation of mercury-containing proteins by enriched stable isotopic tracer and size-exclusion chromatography hyphenated to inductively coupled plasma-isotope dilution mass spectrometry. Analytica Chimica Acta, 2007, 583, 84-91.	2.6	20
225	Mercury in human hair and blood samples from people living in Wanshan mercury mine area, Guizhou, China: An XAS study. Journal of Inorganic Biochemistry, 2008, 102, 500-506.	1.5	20
226	Immunogold labeling and X-ray fluorescence microscopy reveal enrichment ratios of Cu and Zn, metabolism of APP and amyloid- \hat{l}^2 plaque formation in a mouse model of Alzheimer's disease. Metallomics, 2012, 4, 1113.	1.0	20
227	Noninvasive Multimodal Imaging of Osteosarcoma and Lymph Nodes Using a ^{99m} Tc-Labeled Biomineralization Nanoprobe. Analytical Chemistry, 2018, 90, 4529-4534.	3.2	20
228	Preparation of a macroporous silica–pyridine multidentate material and its adsorption behavior for some typical elements. AICHE Journal, 2012, 58, 3517-3525.	1.8	19
229	Sorption characteristic of uranium(VI) ion onto K-feldspar. Applied Radiation and Isotopes, 2017, 128, 311-317.	0.7	19
230	Monitoring Ultraviolet Radiation Dosage Based on a Luminescent Lanthanide Metal–Organic Framework. Inorganic Chemistry, 2018, 57, 8714-8717.	1.9	19
231	Mesoporous Polymer-Derived Ceramic Membranes for Water Purification via a Self-Sacrificed Template. ACS Omega, 2020, 5, 11100-11105.	1.6	19
232	MAX Phase Ceramics/Composites with Complex Shapes. ACS Applied Materials & Eamp; Interfaces, 2021, 13, 5645-5651.	4.0	19
233	Robust covalent organic frameworks with tailor-made chelating sites for synergistic capture of U(<scp>vi</scp>) ions from highly acidic radioactive waste. Dalton Transactions, 2021, 50, 3792-3796.	1.6	19
234	In situ observation of C60(C(COOH)2)2 interacting with living cells using fluorescence microscopy. Science Bulletin, 2006, 51, 1060-1064.	1.7	18

#	Article	IF	Citations
235	Quantifying the biodistribution of nanoparticles. Nature Nanotechnology, 2011, 6, 755-755.	15.6	18
236	Preparation of a Macroporous Silica-Based Pyridine Impregnated Material and Its Adsorption for Palladium. Industrial & Engineering Chemistry Research, 2011, 50, 6898-6905.	1.8	18
237	Influence of a Bridging Group and the Substitution Effect of Bis $(1,2,4$ -triazine) N-Donor Extractants on Their Interactions with a Np $<$ sup $>Vsup> Cation. Inorganic Chemistry, 2014, 53, 7848-7860.$	1.9	18
238	Coculture with Lowâ€Dose SWCNT Attenuates Bacterial Invasion and Inflammation in Human Enterocyteâ€like Cacoâ€2 Cells. Small, 2015, 11, 4366-4378.	5.2	18
239	Quantifying the distribution of ceria nanoparticles in cucumber roots: the influence of labeling. RSC Advances, 2015, 5, 4554-4560.	1.7	18
240	Electrochemical behavior of Th(IV) on the bismuth electrode in LiCl–KCl eutectic. Journal of Nuclear Materials, 2019, 523, 268-275.	1.3	18
241	Kinetic Properties and Electrochemical Separation of Uranium on Liquid Bismuth Electrode in LiCl–KCl Melt. Journal of the Electrochemical Society, 2021, 168, 032503.	1.3	18
242	Pioneering Iodine-125-Labeled Nanoscale Covalent Organic Frameworks for Brachytherapy. Bioconjugate Chemistry, 2021, 32, 755-762.	1.8	18
243	Selenium Speciation in Biological Samples Using a Hyphenated Technique of High-performance Liquid Chromatography and Inductively Coupled Plasma Mass Spectrometry. Chinese Journal of Analytical Chemistry, 2006, 34, 749-753.	0.9	17
244	Applications of radiotracer techniques for the pharmacology and toxicology studies of nanomaterials. Science Bulletin, 2009, 54, 173-182.	4.3	17
245	Cellular response of E. coli upon Hg2+ exposure – a case study of advanced nuclear analytical approach to metalloproteomics. Metallomics, 2013, 5, 913.	1.0	17
246	Positively charged graphene oxide nanoparticle: precisely label the plasma membrane of live cell and sensitively monitor extracellular pH in situ. Chemical Communications, 2014, 50, 3695-3698.	2.2	17
247	Metal ions modulate the conformation and stability of a G-quadruplex with or without a small-molecule ligand. Metallomics, 2015, 7, 1508-1514.	1.0	17
248	The Application of Low-Melting LiCl-KCl-CsCl Eutectic to Electrodeposit Uranium Metal. Journal of the Electrochemical Society, 2019, 166, D606-D616.	1.3	17
249	Amidoxime-Functionalized Covalent Organic Nanosheets for Sequestration of Uranium In Vivo. ACS Applied Bio Materials, 2020, 3, 8731-8738.	2.3	17
250	Construction of Hybrid Bimetallic Uranyl Compounds Based on a Preassembled Terpyridine Metalloligand. Chemistry - A European Journal, 2021, 27, 2124-2130.	1.7	17
251	Gleaming Uranium: An Emerging Emitter for Building Xâ€ray Scintillators. Chemistry - A European Journal, 2020, 26, 1900-1905.	1.7	16
252	Iron oxide nanoparticles aggravate hepatic steatosis and liver injury in nonalcoholic fatty liver disease through BMP-SMAD-mediated hepatic iron overload. Nanotoxicology, 2021, 15, 761-778.	1.6	16

#	Article	IF	CITATIONS
253	Polyvinylpyrrolidone functionalization induces deformable structure of graphene oxide nanosheets for lung-targeting delivery. Nano Today, 2021, 38, 101151.	6.2	16
254	Competitive Coordination of Chloride and Fluoride Anions Towards Trivalent Lanthanide Cations (La ³⁺ and Nd ³⁺) in Molten Salts. Chemistry - A European Journal, 2021, 27, 11721-11729.	1.7	16
255	Tissue contents and subcellular distribution of chromium and other trace metals in experimental diabetic rats after intravenous injection of Cr 50[ndash]enriched stable isotopic tracer solution. Metabolism: Clinical and Experimental, 2001, 50, 1168-1174.	1.5	15
256	Chromatographic partitioning of cesium by a macroporous silicaâ€calix[4]areneâ€crown supramolecular recognition composite. AICHE Journal, 2010, 56, 2632-2640.	1.8	15
257	Full quantification of selenium species by RP and AF-ICP-qMS with on-line isotope dilution in serum samples from mercury-exposed people supplemented with selenium-enriched yeast. Journal of Analytical Atomic Spectrometry, $2011, 26, 224-229$.	1.6	15
258	Trivalent Uranium Complex As a Catalyst to Promote the Functionalization of Carbon Dioxide and Carbon Disulfide: A Computational Mechanistic Study. Journal of Chemical Theory and Computation, 2012, 8, 3605-3617.	2.3	15
259	Solvent Extraction of Cesium with a New Compound Calix[4]arene-bis[(4-methyl-1,2-phenylene)-crown-6]. Journal of Chemical & Engineering Data, 2013, 58, 3275-3281.	1.0	15
260	Influence of phosphate on phytotoxicity of ceria nanoparticles in an agar medium. Environmental Pollution, 2017, 224, 392-399.	3.7	15
261	Two mTOR inhibitors, rapamycin and Torin 1, differentially regulate iron-induced generation of mitochondrial ROS. BioMetals, 2017, 30, 975-980.	1.8	15
262	Direct Electrochemical Preparation of Ni-Zr Alloy from Mixture Oxides in LiCl Molten Salt. Journal of the Electrochemical Society, 2017, 164, D888-D894.	1.3	15
263	Uranium Dendritic Morphology in the Electrorefining: Influences of Temperature and Current Density. Journal of the Electrochemical Society, 2018, 165, D98-D106.	1.3	15
264	<i>Bacillus subtilis</i> causes dissolution of ceria nanoparticles at the nano–bio interface. Environmental Science: Nano, 2019, 6, 216-223.	2.2	15
265	In vivo pharmacokinetics, transfer and clearance study of graphene oxide by La/Ce dual elemental labelling method. NanoImpact, 2020, 17, 100213.	2.4	15
266	Stronger Hydration of Eu(III) Impedes Its Competition against Am(III) in Binding with N-donor Extractants. Inorganic Chemistry, 2020, 59, 6267-6278.	1.9	15
267	Facile Access to Uranium and Thorium Phosphaethynolate Complexes Supported by Tren: Experimental and Theoretical Study. Chinese Journal of Chemistry, 2021, 39, 2125-2131.	2.6	15
268	Hierarchical and self-supporting honeycomb LaNi5 alloy on nickel foam for overall water splitting in alkaline media. Green Energy and Environment, 2022, 7, 799-806.	4.7	15
269	An $\hat{i}\pm$ -amino pyridine resin preconcentration method for iridium in environmental and geological samples. Analytica Chimica Acta, 2000, 403, 243-247.	2.6	14
270	High-Throughput Screening of Substrate Specificity for Protein Tyrosine Phosphatases (PTPs) on Phosphopeptide Microarrays. Methods in Molecular Biology, 2016, 1368, 181-196.	0.4	14

#	Article	IF	Citations
271	Composition, distribution and risk of total fluorine, extractable organofluorine and perfluorinated compounds in Chinese teas. Food Chemistry, 2017, 219, 496-502.	4.2	14
272	Inhibition of the proteasome activity by graphene oxide contributes to its cytotoxicity. Nanotoxicology, 2018, 12, 185-200.	1.6	14
273	Near-room temperature ferromagnetic behavior of single-atom-thick 2D iron in nanolaminated ternary MAX phases. Applied Physics Reviews, 2021, 8, .	5.5	14
274	The dendrite growth, morphology control and deposition properties of uranium electrorefining. Journal of Nuclear Materials, 2021, 555, 153110.	1.3	14
275	Emergence of a Radicalâ€Stabilizing Metal–Organic Framework as a Radioâ€photoluminescence Dosimeter. Angewandte Chemie, 2020, 132, 15321-15326.	1.6	14
276	Design criteria for tetradentate phenanthroline-derived heterocyclic ligands to separate Am(III) from Eu(III). Science China Chemistry, 2014, 57, 1439-1448.	4.2	13
277	Influence of anions on the adsorption of uranyl on hydroxylated α-SiO2(001): A first-principles study. Green Energy and Environment, 2017, 2, 30-41.	4.7	13
278	Iron modulates the activity of monoamine oxidase B in SH-SY5Y cells. BioMetals, 2017, 30, 599-607.	1.8	13
279	Subcellular distribution of Al, Cu, Mg, Mn and other elements in the human liver. Fresenius' Journal of Analytical Chemistry, 1999, 363, 512-516.	1.5	12
280	Comparison of the chromium distribution in organs and subcellular fractions of normal and diabetic rats by using enriched stable isotope Cr-50 tracer technique. Biological Trace Element Research, 1999, 71-72, 121-129.	1.9	12
281	Title is missing!. Journal of Radioanalytical and Nuclear Chemistry, 2002, 251, 437-441.	0.7	12
282	Accumulation and Distribution of Samarium-153 in Rat Brain After Intraperitoneal Injection. Biological Trace Element Research, 2005, 104, 033-040.	1.9	12
283	Detection of Mercury-, Arsenic-, and Selenium-Containing Proteins in Fish Liver from A Mercury Polluted Area of Guizhou Province, China. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2008, 71, 1266-1269.	1.1	12
284	SPEC Process II. Adsorption of strontium and some typical co-existent elements contained in high level liquid waste onto a macroporous silica-based crown ether impregnated functional composite. Journal of Radioanalytical and Nuclear Chemistry, 2009, 280, 181-191.	0.7	12
285	Bioavailability and Distribution and of Ceria Nanoparticles in Simulated Aquatic Ecosystems, Quantification with a Radiotracer Technique. Journal of Nanoscience and Nanotechnology, 2010, 10, 8658-8662.	0.9	12
286	Extraction of Cesium and Some Typical Metals with a Supramolecular Recognition Agent 1,3-Bis(1-nonyloxy)-2,4-crown-6-calix[4]arene. Journal of Chemical & Engineering Data, 2013, 58, 167-175.	1.0	12
287	Preparation of a Macroporous Silica-Based Multidentate Soft-Ligand Material and its Application in the Adsorption of Palladium and the Others. Separation Science and Technology, 2013, 48, 1500-1509.	1.3	12
288	A computational study on the complexation of Np($\langle scp \rangle v \langle scp \rangle \rangle$) with N,N,Nâ \in ² ,Nâ \in ² -tetramethyl-3-oxa-glutaramide (TMOGA) and its carboxylate analogs. Physical Chemistry Chemical Physics, 2014, 16, 16536-16546.	1.3	12

#	Article	IF	CITATIONS
289	Hepatic impacts of gold nanoparticles with different surface coatings as revealed by assessing the hepatic drug-metabolizing enzyme and lipid homeostasis in mice. NanoImpact, 2020, 20, 100259.	2.4	12
290	Activable Enriched Stable Isotope Iron-58 for Monitoring Absorption Rate of Juvenile Athletes for Iron: A Case Study. Food and Nutrition Bulletin, 2002, 23, 57-60.	0.5	11
291	Theoretical study of a hybrid type dumbbell-like fullerene dimer C60CC70. Chemical Physics Letters, 2006, 418, 24-29.	1.2	11
292	New Insight into the Partitioning of Minor Actinides I: Extraction of Palladium and Some Typical Metals with a Multidentate Soft-Ligand 2,6-Bis(5,6-dinonyl-1,2,4-triazine-3-yl)pyridine. Journal of Chemical & Data, 2012, 57, 1267-1273.	1.0	11
293	Theoretical study on stability, mechanical and thermodynamic properties of (Pu, Zr)N. Journal of Nuclear Materials, 2019, 516, 264-270.	1.3	11
294	Thermodynamic properties of praseodymium on the liquid cadmium electrode and evaluation of anodic dissolution behavior in LiCl-KCl eutectic. Journal of Nuclear Materials, 2019, 523, 16-25.	1.3	11
295	Facile construction of diverse diarylmethane scaffolds via uranyl-catalyzed 1,6-addition reaction. Tetrahedron Letters, 2020, 61, 152076.	0.7	11
296	Investigation of selenium distribution in subcellular fractions of human liver by neutron activation analysis. Biological Trace Element Research, 1999, 71-72, 131-138.	1.9	10
297	Isotopic tracer studies of chemical behavior of rare earth elements in environmental and biological sciences. Radiochimica Acta, 2004, 92, 355-358.	0.5	10
298	Preliminary study of selenium and mercury distribution in some porcine tissues and their subcellular fractions by NAA and HG-AFS. Journal of Radioanalytical and Nuclear Chemistry, 2004, 259, 459-463.	0.7	10
299	Geochemical environmental changes and dinosaur extinction during the Cretaceous-Paleogene (K/T) transition in the Nanxiong Basin, South China: Evidence from dinosaur eggshells. Science Bulletin, 2009, 54, 806-815.	4.3	10
300	Is GSH Chelated Pt Molecule Inactive in Anti ancer Treatment? A Case Study of Pt ₆ GS ₄ . Small, 2020, 16, e2002044.	5.2	10
301	Electric Field Effect on the Reactivity of Solid State Materials: The Case of Single Layer Graphene. Advanced Functional Materials, 2020, 30, 1909269.	7.8	10
302	Turn-up Luminescent Sensing of Ultraviolet Radiation by Lanthanide Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 4561-4565.	1.9	10
303	Correlation of mercury with selenium in human hair at a typical mercury-polluted area in China. Biological Trace Element Research, 1998, 63, 95-104.	1.9	9
304	Coulometric titration study of the redox behavior and precise determination of hexachloroiridate(IV) ion and its monoaquo-chloro complex with electrogenerated bi-intermediates. Analytica Chimica Acta, 2000, 415, 185-191.	2.6	9
305	Determination of rare earth elements in plant protoplasts by MAA. Science Bulletin, 2000, 45, 1497-1499.	1.7	9
306	Sorption and desorption of iridium by coastal sediment: effects of iridium speciation and sediment components. Chemical Geology, 2000, 166, 15-22.	1.4	9

#	Article	IF	Citations
307	Title is missing!. Journal of Radioanalytical and Nuclear Chemistry, 2001, 247, 567-570.	0.7	9
308	Synthesis and Characterization of a New Polymer-Based Supramolecular Recognition Material and its Adsorption for Cesium. Solvent Extraction and Ion Exchange, 2012, 30, 17-32.	0.8	9
309	Temporal variations of organochlorine pesticides in precipitation in Beijing, China. Atmospheric Environment, 2012, 61, 614-619.	1.9	9
310	Temporal trends of polychlorinated biphenyls in precipitation in Beijing, China. Atmospheric Environment, 2012, 56, 222-227.	1.9	9
311	Computational thermodynamic study on the complexes of Am(iii) with tridentate N-donor ligands. New Journal of Chemistry, 2015, 39, 7716-7729.	1.4	9
312	Electrochemical Deposition of Erbium on a Binary Al-Zn Cathode. Journal of the Electrochemical Society, 2019, 166, D569-D576.	1.3	9
313	AMPK mediates the neurotoxicity of iron oxide nanoparticles retained in mitochondria or lysosomes. Metallomics, 2019, 11, 1200-1206.	1.0	9
314	Determination of Platinum-Group Elements and Forty Two Other Elements in Two Candidate Danish Cretaceous-Tertiary Boundary Clay Reference Materials by INAA, ENAA and RNAA. Geostandards and Geoanalytical Research, 2001, 25, 167-171.	1.7	8
315	Neutron activation analysis of extractable organohalogens in milk from China. Journal of Radioanalytical and Nuclear Chemistry, 2004, 259, 485-488.	0.7	8
316	Subcellular localization of several heavy metals of Hg, Cd and Pb in human liver. Science Bulletin, 2005, 50, 113-116.	1.7	8
317	Synthesis of a Novel Macroporous Silica-Calix[4]arene-Crown Supramolecular Recognition Material and its Adsorption for Cesium and some Typical Metals in Highly Active Liquid Waste. Solvent Extraction and Ion Exchange, 2010, 28, 526-542.	0.8	8
318	Two new uranyl fluoride complexes with UVlî€O–alkali (Na, Cs) interactions: Experimental and theoretical studies. CrystEngComm, 2013, 15, 8041.	1.3	8
319	Kinetics process of Tb(III)/Tb couple at liquid Zn electrode and thermodynamic properties of Tb-Zn alloys formation. Science China Chemistry, 2017, 60, 813-821.	4.2	8
320	Key Factors Determining Efficiency of Liquid–Liquid Extraction: Implications from Molecular Dynamics Simulations of Biphasic Behaviors of CyMe ₄ -BTPhen and Its Am(III) Complexes. Journal of Physical Chemistry B, 2020, 124, 1751-1766.	1.2	8
321	Quantification of Trace Elements in Protein Bands Using Synchrotron Radiation X-ray Fluorescence after Electrophoretic Separation. Chinese Journal of Analytical Chemistry, 2006, 34, 443-446.	0.9	7
322	SPEC Process III. Synthesis of a Macroporous Silica-Based Crown Ether-Impregnated Polymeric Composite Modified with 1-Octanol and its Adsorption Capacity for Sr(II) lons and Some Typical Co-Existent Metal Ions. Adsorption Science and Technology, 2008, 26, 705-720.	1.5	7
323	Advances in computational actinide chemistry in China. Radiochimica Acta, 2014, 102, 13-25.	0.5	7
324	Synthesis and characterization of a novel organic–inorganic hybrid supramolecular recognition material and its selective adsorption for cesium. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299, 699-708.	0.7	7

#	Article	IF	CITATIONS
325	Structure and catalytic activities of ferrous centers confined on the interface between carbon nanotubes and humic acid. Nanoscale, 2015, 7, 2651-2658.	2.8	7
326	Polarizable and Non-Polarizable Force Field Representations of Ferric Cation and Validations. Journal of Physical Chemistry B, 2017, 121, 5718-5729.	1.2	7
327	Experimental and Theoretical Study of the Extraction of UO22+ by Malonamides in Ionic Liquids. Industrial & Description of Liquids (12708-12716).	1.8	7
328	Light-triggered crosslinking of gold nanoparticles for remarkably improved radiation therapy and computed tomography imaging of tumors. Nanomedicine, 2019, 14, 2941-2955.	1.7	7
329	The proximity of the G-quadruplex to hemin impacts the intrinsic DNAzyme activity in mitochondria. Chemical Communications, 2021, 57, 3038-3041.	2.2	7
330	Stepwise Assembly of a Multicomponent Heterometallic Metal–Organic Framework via Th ₆ -Based Metalloligands. Inorganic Chemistry, 2021, 60, 14535-14539.	1.9	7
331	Element content and element correlations in Chinese human liver. Analytical and Bioanalytical Chemistry, 2004, 380, 773-781.	1.9	6
332	Unambiguous effects of lanthanum?. Toxicology Letters, 2007, 170, 94-96.	0.4	6
333	Instrumental neutron activation analysis of extractable organohalogens in PM2.5 and PM10 in Beijing, China. Journal of Radioanalytical and Nuclear Chemistry, 2007, 271, 115-118.	0.7	6
334	Kinetics analysis and quantitative calculations for the successive radioactive decay process. Nuclear Physics A, 2015, 933, 143-153.	0.6	6
335	Impact of Biological Treatment Techniques on Perfluoroalkyl Acids Emissions in Municipal Sewage. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	6
336	Single-crystal-to-single-crystal desolvation in a Ti ₃₂ nanoring cluster. CrystEngComm, 2018, 20, 7062-7065.	1.3	6
337	Variations of Elemental Distribution in Brain Regions of Neonatal Rats at Different Iodine Intakes. Biological Trace Element Research, 2002, 90, 227-238.	1.9	5
338	Synthesis of new carbon nanomolecule: C141. Science Bulletin, 2004, 49, 793-796.	1.7	5
339	Adsorption of Some Typical Fission Products onto a Novel Macroporous Silica-based Dialkyl Derivative of Pyridine Impregnated Material. Separation Science and Technology, 2012, 47, 1070-1079.	1.3	5
340	Evaluation study on a macroporous silica-based <i>iso</i> hexyl-BTP adsorbent for minor actinides separation from nitric acid medium. Radiochimica Acta, 2014, 102, 93-100.	0.5	5
341	Polystyrene-based Hollow Microsphere Synthesized by \hat{I}^3 -ray Irradiation-assisted Polymerization and Self-Assembly and Its Application in Detection of Ionizing Radiation. Scientific Reports, 2017, 7, 41876.	1.6	5
342	Comparative study of core- and surface-radiolabeling strategies for the assembly of iron oxide nanoparticle-based theranostic nanocomposites. Nanoscale, 2019, 11, 5909-5913.	2.8	5

#	Article	IF	Citations
343	Uranyl-catalyzed hydrosilylation of <i>para</i> -quinone methides: access to diarylmethane derivatives. Organic and Biomolecular Chemistry, 2021, 19, 1575-1579.	1.5	5
344	Theoretical insights into the possible applications of amidoxime-based adsorbents in neptunium and plutonium separation. Dalton Transactions, 2021, 50, 15576-15584.	1.6	5
345	In situ analysis of trace elements in metalloproteins of human liver by synchrotron radiation X-ray fluorescence. Science in China Series A: Mathematics, 2000, 43, 88-92.	0.5	4
346	129I assessment reveals the impact of Fukushima incident on Dapeng Peninsula, Shenzhen, China. Journal of Radioanalytical and Nuclear Chemistry, 2014, 301, 57-63.	0.7	4
347	A novel approach for the removal of radiocesium from aqueous solution by ZSM-5 molecular sieve. Applied Radiation and Isotopes, 2018, 139, 231-237.	0.7	4
348	Advanced Nuclear and Related Techniques for Metallomics and Nanometallomics. Advances in Experimental Medicine and Biology, 2018, 1055, 213-243.	0.8	4
349	Theoretical prediction of chiral actinide endohedral borospherenes. New Journal of Chemistry, 2021, 45, 6803-6810.	1.4	4
350	Manpower Requirements and Education in Nuclear Science: An International Perspective. Journal of Radioanalytical and Nuclear Chemistry, 2005, 263, 103-106.	0.7	3
351	Theoretical investigation on the solution behaviors of Ba and Zr in uranium dinitride. Science China Chemistry, 2015, 58, 1891-1897.	4.2	3
352	Influence of denticity and combined soft–hard strategy on the interaction of picolinic-type ligands with NpO ₂ ⁺ . RSC Advances, 2017, 7, 12236-12246.	1.7	3
353	The folding equilibria of enterobactin enantiomers and their interaction with actinides. Physical Chemistry Chemical Physics, 2019, 21, 16017-16031.	1.3	3
354	Electrochemical Behaviour and Chemical Species of Sm(II) in AlCl ₃ â€NaCl with Different Lewis Acidity. Chemistry - A European Journal, 2022, 28, .	1.7	3
355	Title is missing!. Journal of Radioanalytical and Nuclear Chemistry, 2000, 245, 47-49.	0.7	2
356	Effect of calcium supplements on osteoporosis by using nuclear analytical techniques. Journal of Radioanalytical and Nuclear Chemistry, 2004, 259, 369-373.	0.7	2
357	Isotopic Tracer Studies on the Metabolism and Functional Roles of Mineral Elements in Institute of High Energy Physics, China. Journal of Nuclear Science and Technology, 2006, 43, 450-454.	0.7	2
358	Effect of Iodine Supplement on Iodine Status and 5'-Deiodinase Activity in the Brain of Neonatal Rats with Iodine Deficiency. Biological Trace Element Research, 2006, 114, 207-216.	1.9	2
359	Preliminary study of oxidative stress in human hepatocellular carcinoma and adjacent normal liver tissues. Chinese Journal of Clinical Oncology, 2006, 3, 11-14.	0.0	2
360	Iridium in the Bering Sea and Arctic Ocean studied by neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 2007, 271, 125-128.	0.7	2

#	Article	lF	CITATIONS
361	Uptake and elimination of lanthanum by excised roots of Triticum aestivum L Journal of Radioanalytical and Nuclear Chemistry, 2007, 272, 523-525.	0.7	2
362	A benchmark study of DFT methods on the electronic properties of lanthanofullerenes: a case study of Ce@C2v(9)-C82 anion. RSC Advances, 2013, 3, 26252.	1.7	2
363	Extraction behavior of cesium and some typical fission and non-fission products with a new 1,3-di(1-decyloxy)-2,4-crown-6-calix[4]arene. Radiochimica Acta, 2014, 102, 135-142.	0.5	2
364	AÂdensity functional theory study of the competitive complexation of pyridine against H ₂ O and Cl ^{â^'â^'} to Cm ³⁺ and Ce ⁴⁺ . Radiochimica Acta, 2014, 102, 101-109.	0.5	2
365	Theoretical investigation on the mechanism and dynamics of oxo exchange of neptunyl(<scp>vi</scp>) hydroxide in aqueous solution. Physical Chemistry Chemical Physics, 2015, 17, 7537-7547.	1.3	2
366	Modern Nuclear Analytical Techniques and Their Applications in China. Journal of Nuclear and Radiochemical Sciences, 2000, 1, 19-22.	0.7	2
367	Decorporation of uranyl in kidneys using an engineered nanocomposite. Environmental Science: Nano, 2022, 9, 2704-2712.	2.2	2
368	Study of interfering nuclear reactions in determination of platinum group elements by neutron activation analysis. Science in China Series A: Mathematics, 1998, 41, 551-556.	0.5	1
369	Determination of extractable organic halogens in pine needles by neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 2004, 259, 129-134.	0.7	1
370	Hybrid NAA method for assessment of the levels of organic halogen compounds in the atmosphere in China. Journal of Radioanalytical and Nuclear Chemistry, 2008, 278, 241-245.	0.7	1
371	Two novel thorium organic frameworks constructed by bi- and tritopic ligands. Radiochimica Acta, 2017, 105, 531-539.	0.5	1
372	InnenrÃ $\frac{1}{4}$ cktitelbild: Emergence of Uranium as a Distinct Metal Center for Building Intrinsic X-ray Scintillators (Angew. Chem. 26/2018). Angewandte Chemie, 2018, 130, 8031-8031.	1.6	1
373	Comparative Study of the Biphasic Behavior of Cyanex301 and Its Two Analogs by Molecular Dynamics Simulations. Advanced Theory and Simulations, 2020, 3, 1900242.	1.3	1
374	The oxo exchange reaction mechanism of americyl(VI): a density functional theory study. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324, 857-868.	0.7	1
375	Hybrid NAA for study of organic halogens in precipitation in Beijing, China. Proceedings in Radiochemistry, 2011, 1, 323-326.	0.2	1
376	Highly stable actinide(III) complexes supported by doubly aromatic ligands. Physical Chemistry Chemical Physics, 2022, , .	1.3	1
377	Highly Selective and Simple Synthesis of C2mâ€"Xâ€"C2n Fullerene Dimers ChemInform, 2004, 35, no.	0.1	О
378	XAFS study on interactions of metallothionein, mercuric chloride and/or sodium selenite. Diqiu Huaxue, 2006, 25, 124-124.	0.5	0

#	Article	IF	CITATIONS
379	Chapter 4. Isotopic Techniques Combined with ICP-MS and ESI-MS. , 2010, , 95-127.		0
380	Hydrocarbon chain growth and hydrogenation on $V(100)$: a density functional theory study. RSC Advances, 2015, 5, 4909-4917.	1.7	0
381	Gut Microbiota: Acute Oral Administration of Singleâ€Walled Carbon Nanotubes Increases Intestinal Permeability and Inflammatory Responses: Association with the Changes in Gut Microbiota in Mice (Adv. Healthcare Mater. 13/2018). Advanced Healthcare Materials, 2018, 7, 1870053.	3.9	0
382	Frontispiece: Gleaming Uranium: An Emerging Emitter for Building Xâ€ray Scintillators. Chemistry - A European Journal, 2020, 26, .	1.7	0
383	Deuterated Covalent Organic Frameworks with Significantly Enhanced Luminescence. Angewandte Chemie, 2021, 133, 21420-21425.	1.6	O
384	Two-dimensional transition metal carbide/nitride (MXene)-based nanomaterials for removal of toxic/radioactive metal ions from wastewater. , 2022, , $161-194$.		0
385	Impact of the proximity effect on uranyl coordination of conformationally variable weakly-bonded cucurbit[6]uril-bipyridinium pseudorotaxane. CrystEngComm, 2022, 24, 1955-1965.	1.3	0
386	Biphasic Behaviors of Nd ³⁺ Bound with Cyanex272, Cyanex301, and Cyanex302: A Molecular Dynamics Simulation Study. Inorganic Chemistry, 2022, 61, 8920-8929.	1.9	0