Stéphanie Boué

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7506557/publications.pdf

Version: 2024-02-01

70 papers 5,896 citations

32 h-index 61 g-index

73 all docs

73 docs citations

times ranked

73

9321 citing authors

#	Article	IF	CITATIONS
1	Applying Systems Toxicology Methods to Drug Safety. , 2021, , 330-341.		1
2	A Systems-Based Approach to Toxicity Testing. , 2021, , 189-206.		0
3	Scientific Basis for Assessment of Electronic Nicotine Delivery Products. , 2021, , 23-40.		О
4	Smoking-Related Disease Risk Reduction Potential of ENDPs. , 2021, , 461-500.		1
5	Assessment of ENDPs in Animal Models of Disease. , 2021, , 319-365.		О
6	Toxicological Assessment of ENDPs InÂVivo. , 2021, , 305-317.		0
7	Systems for Generation of ENDP Aerosols and Their Administration to InÂVitro and InÂVivo Experimental Models. , 2021, , 235-255.		O
8	Reduced Chronic Toxicity and Carcinogenicity in A/J Mice in Response to Life-Time Exposure to Aerosol From a Heated Tobacco Product Compared With Cigarette Smoke. Toxicological Sciences, 2020, 178, 44-70.	3.1	12
9	Comparing the preclinical risk profile of inhalable candidate and potential candidate modified risk tobacco products: A bridging use case. Toxicology Reports, 2020, 7, 1187-1206.	3.3	8
10	State-of-the-art methods and devices for the generation, exposure, and collection of aerosols from heat-not-burn tobacco products. Toxicology Research and Application, 2020, 4, 239784731989786.	0.6	5
11	State-of-the-art methods and devices for generation, exposure, and collection of aerosols from e-vapor products. Toxicology Research and Application, 2020, 4, 239784732097975.	0.6	1
12	Toxicological assessment of Tobacco Heating System 2.2: Findings from an independent peer review. Regulatory Toxicology and Pharmacology, 2019, 104, 115-127.	2.7	9
13	The sbv IMPROVER Systems Toxicology computational challenge: Identification of human and species-independent blood response markers as predictors of smoking exposure and cessation status. Computational Toxicology, 2018, 5, 38-51.	3.3	13
14	Embracing Transparency Through Data Sharing. International Journal of Toxicology, 2018, 37, 466-471.	1.2	9
15	Interrogating the microbiome: experimental and computational considerations in support of study reproducibility. Drug Discovery Today, 2018, 23, 1644-1657.	6.4	63
16	Aerosol from Tobacco Heating System 2.2 has reduced impact on mouse heart gene expression compared with cigarette smoke. Food and Chemical Toxicology, 2017, 101, 157-167.	3.6	14
17	Crowd-Sourced Verification of Computational Methods and Data in Systems Toxicology: A Case Study with a Heat-Not-Burn Candidate Modified Risk Tobacco Product. Chemical Research in Toxicology, 2017, 30, 934-945.	3.3	15
18	Exploring the microbiome in health and disease. Toxicology Research and Application, 2017, 1, 239784731774188.	0.6	36

#	Article	IF	CITATIONS
19	Supporting evidence-based analysis for modified risk tobacco products through a toxicology data-sharing infrastructure. F1000Research, 2017, 6, 12.	1.6	7
20	Supporting evidence-based analysis for modified risk tobacco products through a toxicology data-sharing infrastructure. F1000Research, 2017, 6, 12.	1.6	10
21	Alterations in Serum Polyunsaturated Fatty Acids and Eicosanoids in Patients with Mild to Moderate Chronic Obstructive Pulmonary Disease (COPD). International Journal of Molecular Sciences, 2016, 17, 1583.	4.1	34
22	Community-Reviewed Biological Network Models for Toxicology and Drug Discovery Applications. Gene Regulation and Systems Biology, 2016, 10, GRSB.S39076.	2.3	10
23	SETD7 Regulates the Differentiation of Human Embryonic Stem Cells. PLoS ONE, 2016, 11, e0149502.	2.5	18
24	Comprehensive systems biology analysis of a 7-month cigarette smoke inhalation study in C57BL/6 mice. Scientific Data, 2016, 3, 150077.	5.3	25
25	Crowdsourcing and curation: perspectives from biology and natural language processing. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw115.	3.0	10
26	Evaluation of the Tobacco Heating System 2.2. Part 4: 90-day OECD 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects compared with cigarette smoke. Regulatory Toxicology and Pharmacology, 2016, 81, S59-S81.	2.7	70
27	Effects of cigarette smoke, cessation and switching to a candidate modified risk tobacco product on the liver in ⟨i⟩Apoe⟨/i⟩⟨sup⟩â^²/â^²⟨sup⟩ mice – a systems toxicology analysis. Inhalation Toxicology, 2016, 28, 226-240.	1.6	22
28	The Apoeâ^'/â^' mouse model: a suitable model to study cardiovascular and respiratory diseases in the context of cigarette smoke exposure and harm reduction. Journal of Translational Medicine, 2016, 14, 146.	4.4	137
29	Effects of Cigarette Smoke, Cessation, and Switching to Two Heat-Not-Burn Tobacco Products on Lung Lipid Metabolism in <i>C57BL/6</i> and <i>Apoe</i> ^{â^'/â^'} Miceâ€''An Integrative Systems Toxicology Analysis. Toxicological Sciences, 2016, 149, 441-457.	3.1	49
30	An 8-Month Systems Toxicology Inhalation/Cessation Study in Apoe ^{â^'/â^'} Mice to Investigate Cardiovascular and Respiratory Exposure Effects of a Candidate Modified Risk Tobacco Product, THS 2.2, Compared With Conventional Cigarettes. Toxicological Sciences, 2016, 149, 411-432.	3.1	81
31	Causal biological network database: a comprehensive platform of causal biological network models focused on the pulmonary and vascular systems. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav030.	3.0	89
32	Transcriptional profiling and targeted proteomics reveals common molecular changes associated with cigarette smoke-induced lung emphysema development in five susceptible mouse strains. Inflammation Research, 2015, 64, 471-486.	4.0	17
33	A 7-month cigarette smoke inhalation study in C57BL/6 mice demonstrates reduced lung inflammation and emphysema following smoking cessation or aerosol exposure from a prototypic modified risk tobacco product. Food and Chemical Toxicology, 2015, 80, 328-345.	3.6	88
34	Causal Biological Network Database: A Comprehensive Platform of Causal Biological Network Models Focused on the Pulmonary and Vascular Systems. Methods in Pharmacology and Toxicology, 2015, , 65-93.	0.2	8
35	Toxicity of aerosols of nicotine and pyruvic acid (separate and combined) in Sprague–Dawley rats in a 28-day OECD 412 inhalation study and assessment of systems toxicology. Inhalation Toxicology, 2015, 27, 405-431.	1.6	37
36	Enhancement of COPD biological networks using a web-based collaboration interface. F1000Research, 2015, 4, 32.	1.6	22

#	Article	IF	Citations
37	Enhancement of COPD biological networks using a web-based collaboration interface. F1000Research, 2015, 4, 32.	1.6	29
38	Systems Biology Research into Cardiovascular Disease: Contributions of Lipidomics-based Approaches to Biomarker Discovery. Current Drug Discovery Technologies, 2015, 12, 129-154.	1.2	15
39	A Systems Toxicology Approach to Investigating the Cardiovascular Effects of Cigarette Smoke and Environmental Pollutants in ApoE-Deficient Mice. Methods in Pharmacology and Toxicology, 2015, , 345-370.	0.2	0
40	Reputation-based collaborative network biology. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2015, , 270-81.	0.7	4
41	A vascular biology network model focused on inflammatory processes to investigate atherogenesis and plaque instability. Journal of Translational Medicine, 2014, 12, 185.	4.4	26
42	The species translation challengeâ€"A systems biology perspective on human and rat bronchial epithelial cells. Scientific Data, 2014, 1, 140009.	5.3	46
43	REPUTATION-BASED COLLABORATIVE NETWORK BIOLOGY. , 2014, , .		3
44	Macrohistone Variants Preserve Cell Identity by Preventing the Gain of H3K4me2 during Reprogramming to Pluripotency. Cell Reports, 2013, 3, 1005-1011.	6.4	72
45	Strengths and limitations of microarray-based phenotype prediction: lessons learned from the IMPROVER Diagnostic Signature Challenge. Bioinformatics, 2013, 29, 2892-2899.	4.1	108
46	Cigarette smoke induces molecular responses in respiratory tissues of ApoEâ^'/â^' mice that are progressively deactivated upon cessation. Toxicology, 2013, 314, 112-124.	4.2	47
47	Cigarette-smoke-induced atherogenic lipid profiles in plasma and vascular tissue of apolipoprotein E-deficient mice are attenuated by smoking cessation. Atherosclerosis, 2013, 229, 86-93.	0.8	47
48	Classification of lung adenocarcinoma and squamous cell carcinoma samples based on their gene expression profile in the sbv IMPROVER Diagnostic Signature Challenge. Systems Biomedicine (Austin,) Tj ETQqC) 0 0.7 gBT	/Owerlock 10
49	On Crowd-verification of Biological Networks. Bioinformatics and Biology Insights, 2013, 7, BBI.S12932.	2.0	25
50	sbv IMPROVER Diagnostic Signature Challenge. Systems Biomedicine (Austin, Tex), 2013, 1, 196-207.	0.7	6
51	Modulation of atherogenic lipidome by cigarette smoke in apolipoprotein E-deficient mice. Atherosclerosis, 2012, 225, 328-334.	0.8	50
52	LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nature Cell Biology, 2011, 13, 652-659.	10.3	281
53	Methods for making induced pluripotent stem cells: reprogramming \tilde{A} la carte. Nature Reviews Genetics, 2011, 12, 231-242.	16.3	415
54	Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nature Reviews Molecular Cell Biology, 2011, 12, 79-89.	37.0	567

#	Article	IF	Citations
55	Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature, 2011, 472, 221-225.	27.8	510
56	Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development. Development (Cambridge), 2011, 138, 3699-3709.	2.5	237
57	Transcriptomics approach to investigate zebrafish heart regeneration. Journal of Cardiovascular Medicine, 2010, 11, 369-380.	1.5	54
58	Analysis of Human and Mouse Reprogramming of Somatic Cells to Induced Pluripotent Stem Cells. What Is in the Plate?. PLoS ONE, 2010, 5, e12664.	2.5	47
59	Rem2 GTPase controls proliferation and apoptosis of neurons during embryo development. Cell Cycle, 2010, 9, 3414-3422.	2.6	11
60	Epigenetic Mechanisms that Regulate Cell Identity. Cell Stem Cell, 2010, 7, 565-570.	11.1	98
61	Recent amplification and impact of MITEs on the genome of grapevine (Vitis vinifera L.). Genome Biology and Evolution, 2009, 1, 75-84.	2.5	42
62	Generation of Induced Pluripotent Stem Cells from Human Cord Blood Using OCT4 and SOX2. Cell Stem Cell, 2009, 5, 353-357.	11.1	392
63	ASTD: The Alternative Splicing and Transcript Diversity database. Genomics, 2009, 93, 213-220.	2.9	87
64	Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 2008, 26, 1276-1284.	17.5	1,275
65	Homozygous PMS2 germline mutations in two families with early-onset haematological malignancy, brain tumours, HNPCC-associated tumours, and signs of neurofibromatosis type 1. European Journal of Human Genetics, 2008, 16, 62-72.	2.8	79
66	Identification of tightly regulated groups of genes during Drosophila melanogaster embryogenesis. Molecular Systems Biology, 2007, 3, 72.	7.2	67
67	Similar gene expression profiles do not imply similar tissue functions. Trends in Genetics, 2006, 22, 132-138.	6.7	59
68	Direct membrane protein–DNA interactions required early in nuclear envelope assembly. Journal of Cell Biology, 2006, 173, 469-476.	5.2	102
69	Extraction of Transcript Diversity from Scientific Literature. PLoS Computational Biology, 2005, 1, e10.	3.2	31
70	Alternative splicing and evolution. BioEssays, 2003, 25, 1031-1034.	2.5	119