List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7506511/publications.pdf Version: 2024-02-01

		435	663
479	72,963	131	255
papers	citations	h-index	g-index
492	492	492	59882
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Novel Serum Protein Similar to C1q, Produced Exclusively in Adipocytes. Journal of Biological Chemistry, 1995, 270, 26746-26749.	3.4	2,702
2	The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nature Medicine, 2001, 7, 947-953.	30.7	2,334
3	Adipose Tissue, Inflammation, and Cardiovascular Disease. Circulation Research, 2005, 96, 939-949.	4.5	1,779
4	Adipose tissue remodeling and obesity. Journal of Clinical Investigation, 2011, 121, 2094-2101.	8.2	1,455
5	Caveolins, a Family of Scaffolding Proteins for Organizing "Preassembled Signaling Complexes―at the Plasma Membrane. Journal of Biological Chemistry, 1998, 273, 5419-5422.	3.4	1,375
6	Obesity-associated improvements in metabolic profile through expansion of adipose tissue. Journal of Clinical Investigation, 2007, 117, 2621-2637.	8.2	1,104
7	Visceral Fat Adipokine Secretion Is Associated With Systemic Inflammation in Obese Humans. Diabetes, 2007, 56, 1010-1013.	0.6	1,094
8	Minireview: The Adipocyte—At the Crossroads of Energy Homeostasis, Inflammation, and Atherosclerosis. Endocrinology, 2003, 144, 3765-3773.	2.8	1,077
9	ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends in Endocrinology and Metabolism, 2002, 13, 84-89.	7.1	1,069
10	Complex Distribution, Not Absolute Amount of Adiponectin, Correlates with Thiazolidinedione-mediated Improvement in Insulin Sensitivity. Journal of Biological Chemistry, 2004, 279, 12152-12162.	3.4	1,018
11	Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nature Medicine, 2013, 19, 1338-1344.	30.7	988
12	Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature, 2012, 481, 511-515.	27.8	975
13	Caveolins, Liquid-Ordered Domains, and Signal Transduction. Molecular and Cellular Biology, 1999, 19, 7289-7304.	2.3	960
14	Structure-Function Studies of the Adipocyte-secreted Hormone Acrp30/Adiponectin. Journal of Biological Chemistry, 2003, 278, 9073-9085.	3.4	941
15	Adipose Tissue. Diabetes, 2006, 55, 1537-1545.	0.6	916
16	Metabolic Dysregulation and Adipose Tissue Fibrosis: Role of Collagen VI. Molecular and Cellular Biology, 2009, 29, 1575-1591.	2.3	862
17	Adipogenesis and metabolic health. Nature Reviews Molecular Cell Biology, 2019, 20, 242-258.	37.0	836
18	Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nature Medicine, 2011, 17, 55-63.	30.7	751

#	Article	IF	CITATIONS
19	Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. Journal of Clinical Investigation, 2001, 108, 1875-1881.	8.2	748
20	Adiponectin, Leptin, and Fatty Acids in the Maintenance of Metabolic Homeostasis through Adipose Tissue Crosstalk. Cell Metabolism, 2016, 23, 770-784.	16.2	730
21	Adiponectin acts in the brain to decrease body weight. Nature Medicine, 2004, 10, 524-529.	30.7	722
22	Hypoxia-Inducible Factor 1α Induces Fibrosis and Insulin Resistance in White Adipose Tissue. Molecular and Cellular Biology, 2009, 29, 4467-4483.	2.3	720
23	Fibrosis and Adipose Tissue Dysfunction. Cell Metabolism, 2013, 18, 470-477.	16.2	717
24	The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor. Current Biology, 1998, 8, 335-340.	3.9	649
25	Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends in Cell Biology, 1994, 4, 231-235.	7.9	636
26	Molecular Cloning of Caveolin-3, a Novel Member of the Caveolin Gene Family Expressed Predominantly in Muscle. Journal of Biological Chemistry, 1996, 271, 2255-2261.	3.4	623
27	Expression of Caveolin-3 in Skeletal, Cardiac, and Smooth Muscle Cells. Journal of Biological Chemistry, 1996, 271, 15160-15165.	3.4	619
28	Obesity and cancer—mechanisms underlying tumour progression and recurrence. Nature Reviews Endocrinology, 2014, 10, 455-465.	9.6	575
29	Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid–induced ceramide biosynthesis in mice. Journal of Clinical Investigation, 2011, 121, 1858-1870.	8.2	566
30	Mice Lacking Adiponectin Show Decreased Hepatic Insulin Sensitivity and Reduced Responsiveness to Peroxisome Proliferator-activated Receptor γ Agonists. Journal of Biological Chemistry, 2006, 281, 2654-2660.	3.4	558
31	Adipose Tissue-Derived Factors: Impact on Health and Disease. Endocrine Reviews, 2006, 27, 762-778.	20.1	536
32	Induction of Adipocyte Complement-Related Protein of 30 Kilodaltons by PPARÎ ³ Agonists: A Potential Mechanism of Insulin Sensitization. Endocrinology, 2002, 143, 998-1007.	2.8	533
33	Adipocyte Inflammation Is Essential for Healthy Adipose Tissue Expansion and Remodeling. Cell Metabolism, 2014, 20, 103-118.	16.2	525
34	Targeting adipose tissue in the treatment of obesity-associated diabetes. Nature Reviews Drug Discovery, 2016, 15, 639-660.	46.4	518
35	Flotillin and Epidermal Surface Antigen Define a New Family of Caveolae-associated Integral Membrane Proteins. Journal of Biological Chemistry, 1997, 272, 13793-13802.	3.4	510
36	The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. Journal of Clinical Investigation, 2017, 127, 74-82.	8.2	507

#	Article	IF	CITATIONS
37	Sexual Differentiation, Pregnancy, Calorie Restriction, and Aging Affect the Adipocyte-Specific Secretory Protein Adiponectin. Diabetes, 2003, 52, 268-276.	0.6	501
38	Caveolin-1-deficient Mice Are Lean, Resistant to Diet-induced Obesity, and Show Hypertriglyceridemia with Adipocyte Abnormalities. Journal of Biological Chemistry, 2002, 277, 8635-8647.	3.4	494
39	Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 209-214.	2.4	487
40	A Transgenic Mouse with a Deletion in the Collagenous Domain of Adiponectin Displays Elevated Circulating Adiponectin and Improved Insulin Sensitivity. Endocrinology, 2004, 145, 367-383.	2.8	480
41	Cell-type and Tissue-specific Expression of Caveolin-2. Journal of Biological Chemistry, 1997, 272, 29337-29346.	3.4	466
42	An FGF21-Adiponectin-Ceramide Axis Controls Energy Expenditure and Insulin Action in Mice. Cell Metabolism, 2013, 17, 790-797.	16.2	443
43	Adipokines as novel biomarkers and regulators of the metabolic syndrome. Annals of the New York Academy of Sciences, 2010, 1212, E1-E19.	3.8	431
44	Adipose-derived resistin and gut-derived resistin-like molecule‑β selectively impair insulin action on glucose production. Journal of Clinical Investigation, 2003, 111, 225-230.	8.2	429
45	The cell biology of fat expansion. Journal of Cell Biology, 2015, 208, 501-512.	5.2	428
46	The Hyperglycemia-induced Inflammatory Response in Adipocytes. Journal of Biological Chemistry, 2005, 280, 4617-4626.	3.4	410
47	Adiponectin, the past two decades. Journal of Molecular Cell Biology, 2016, 8, 93-100.	3.3	410
48	A Haplotype at the Adiponectin Locus Is Associated With Obesity and Other Features of the Insulin Resistance Syndrome. Diabetes, 2002, 51, 2306-2312.	0.6	407
49	MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nature Medicine, 2012, 18, 1539-1549.	30.7	375
50	Jnk1 but not jnk2 promotes the development of steatohepatitis in mice. Hepatology, 2006, 43, 163-172.	7.3	348
51	The Adipocyte as an Endocrine Cell. Endocrinology and Metabolism Clinics of North America, 2008, 37, 753-768.	3.2	343
52	Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends in Endocrinology and Metabolism, 2010, 21, 345-352.	7.1	340
53	Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. Journal of Clinical Investigation, 2005, 115, 1163-1176.	8.2	338
54	Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5874-5879.	7.1	337

#	Article	IF	CITATIONS
55	Specific Inhibitors of p38 Mitogen-activated Protein Kinase Block 3T3-L1 Adipogenesis. Journal of Biological Chemistry, 1998, 273, 32111-32120.	3.4	325
56	Caveolin Isoforms Differ in Their N-terminal Protein Sequence and Subcellular Distribution. IDENTIFICATION AND EPITOPE MAPPING OF AN ISOFORM-SPECIFIC MONOCLONAL ANTIBODY PROBE. Journal of Biological Chemistry, 1995, 270, 16395-16401.	3.4	322
57	Direct Insulin and Leptin Action on Pro-opiomelanocortin Neurons Is Required for Normal Glucose Homeostasis and Fertility. Cell Metabolism, 2010, 11, 286-297.	16.2	321
58	Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization. Oncogene, 2003, 22, 6408-6423.	5.9	317
59	Spliced X-Box Binding Protein 1 Couples the Unfolded Protein Response to Hexosamine Biosynthetic Pathway. Cell, 2014, 156, 1179-1192.	28.9	317
60	Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. American Journal of Physiology - Cell Physiology, 2003, 285, C222-C235.	4.6	308
61	Constitutive and Growth Factor-Regulated Phosphorylation of Caveolin-1 Occurs at the Same Site (Tyr-14) in Vivo: Identification of a c-Src/Cav-1/Grb7 Signaling Cassette. Molecular Endocrinology, 2000, 14, 1750-1775.	3.7	307
62	The Lipopolysaccharide-activated Toll-like Receptor (TLR)-4 Induces Synthesis of the Closely Related Receptor TLR-2 in Adipocytes. Journal of Biological Chemistry, 2000, 275, 24255-24263.	3.4	300
63	Regulation of Resistin Expression and Circulating Levels in Obesity, Diabetes, and Fasting. Diabetes, 2004, 53, 1671-1679.	0.6	300
64	Fat apoptosis through targeted activation of caspase 8: a new mouse model of inducible and reversible lipoatrophy. Nature Medicine, 2005, 11, 797-803.	30.7	280
65	Role of Caveolin-1 in the Modulation of Lipolysis and Lipid Droplet Formation. Diabetes, 2004, 53, 1261-1270.	0.6	278
66	An Endothelial-to-Adipocyte Extracellular Vesicle Axis Governed by Metabolic State. Cell, 2018, 175, 695-708.e13.	28.9	277
67	Role of resistin in diet-induced hepatic insulin resistance. Journal of Clinical Investigation, 2004, 114, 232-239.	8.2	277
68	Mitochondrial dysfunction in white adipose tissue. Trends in Endocrinology and Metabolism, 2012, 23, 435-443.	7.1	276
69	Secretion of the Adipocyte-Specific Secretory Protein Adiponectin Critically Depends on Thiol-Mediated Protein Retention. Molecular and Cellular Biology, 2007, 27, 3716-3731.	2.3	275
70	Adipocyte-derived endotrophin promotes malignant tumor progression. Journal of Clinical Investigation, 2012, 122, 4243-4256.	8.2	272
71	Paracrine and Endocrine Effects of Adipose Tissue on Cancer Development and Progression. Endocrine Reviews, 2011, 32, 550-570.	20.1	271
72	Disulfide-Dependent Multimeric Assembly of Resistin Family Hormones. Science, 2004, 304, 1154-1158.	12.6	269

#	Article	IF	CITATIONS
73	Targeted Induction of Ceramide Degradation Leads to Improved Systemic Metabolism and Reduced Hepatic Steatosis. Cell Metabolism, 2015, 22, 266-278.	16.2	268
74	Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nature Communications, 2014, 5, 3485.	12.8	263
75	Caveolin-1 Gene Disruption Promotes Mammary Tumorigenesis and Dramatically Enhances Lung Metastasis in Vivo. Journal of Biological Chemistry, 2004, 279, 51630-51646.	3.4	259
76	Consuming Fructoseâ€sweetened Beverages Increases Body Adiposity in Mice. Obesity, 2005, 13, 1146-1156.	4.0	255
77	Myofibroblasts in Murine Cutaneous Fibrosis Originate From Adiponectinâ€Positive Intradermal Progenitors. Arthritis and Rheumatology, 2015, 67, 1062-1073.	5.6	254
78	Diabetes and apoptosis: lipotoxicity. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 1484-1495.	4.9	246
79	Mechanisms of Early Insulin-Sensitizing Effects of Thiazolidinediones in Type 2 Diabetes. Diabetes, 2004, 53, 1621-1629.	0.6	240
80	Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nature Communications, 2014, 5, 3878.	12.8	236
81	Hyperglycemia-induced Production of Acute Phase Reactants in Adipose Tissue. Journal of Biological Chemistry, 2001, 276, 42077-42083.	3.4	230
82	Hyperglycemia as a Risk Factor for Cancer Progression. Diabetes and Metabolism Journal, 2014, 38, 330.	4.7	229
83	A Proteomic Approach for Identification of Secreted Proteins during the Differentiation of 3T3-L1 Preadipocytes to Adipocytes. Molecular and Cellular Proteomics, 2002, 1, 213-222.	3.8	227
84	Adiponectin: Systemic contributor to insulin sensitivity. Current Diabetes Reports, 2003, 3, 207-213.	4.2	227
85	Adiponectin, Cardiovascular Function, and Hypertension. Hypertension, 2008, 51, 8-14.	2.7	219
86	Xbp1s in Pomc Neurons Connects ER Stress with Energy Balance and Glucose Homeostasis. Cell Metabolism, 2014, 20, 471-482.	16.2	213
87	Adiponectin, driver or passenger on the road to insulin sensitivity?. Molecular Metabolism, 2013, 2, 133-141.	6.5	211
88	Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis. Journal of Lipid Research, 2013, 54, 2423-2436.	4.2	211
89	Induction of Adipocyte Complement-Related Protein of 30 Kilodaltons by PPARÂ Agonists: A Potential Mechanism of Insulin Sensitization. Endocrinology, 2002, 143, 998-1007.	2.8	209
90	Genetic Ablation of Caveolin-1 Confers Protection Against Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 98-105.	2.4	206

#	Article	IF	CITATIONS
91	Specific Hepatic Sphingolipids Relate to Insulin Resistance, Oxidative Stress, and Inflammation in Nonalcoholic Steatohepatitis. Diabetes Care, 2018, 41, 1235-1243.	8.6	203
92	The Role of Adipocytes and Adipocyteâ€Like Cells in the Severity of COVIDâ€19 Infections. Obesity, 2020, 28, 1187-1190.	3.0	201
93	Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. Journal of Lipid Research, 2019, 60, 1648-1697.	4.2	197
94	Cyclin D1 Repression of Peroxisome Proliferator-Activated Receptor Î ³ Expression and Transactivation. Molecular and Cellular Biology, 2003, 23, 6159-6173.	2.3	195
95	Mechanisms of obesity and related pathologies: The macro―and microcirculation of adipose tissue. FEBS Journal, 2009, 276, 5738-5746.	4.7	194
96	Selective Inhibition of Hypoxia-Inducible Factor 1α Ameliorates Adipose Tissue Dysfunction. Molecular and Cellular Biology, 2013, 33, 904-917.	2.3	192
97	Adiponectin in health and disease: evaluation of adiponectin-targeted drug development strategies. Trends in Pharmacological Sciences, 2009, 30, 234-239.	8.7	191
98	Caveolin-2 Localizes to the Golgi Complex but Redistributes to Plasma Membrane, Caveolae, and Rafts when Co-expressed with Caveolin-1. Journal of Biological Chemistry, 1999, 274, 25708-25717.	3.4	188
99	Expression of Caveolin-1 Is Required for the Transport of Caveolin-2 to the Plasma Membrane. Journal of Biological Chemistry, 1999, 274, 25718-25725.	3.4	184
100	Why does obesity cause diabetes?. Cell Metabolism, 2022, 34, 11-20.	16.2	183
101	Role of caveolin and caveolae in insulin signaling and diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E1151-E1160.	3.5	181
102	Partial Leptin Reduction as an Insulin Sensitization and Weight Loss Strategy. Cell Metabolism, 2019, 30, 706-719.e6.	16.2	179
103	Adipocyte metabolism and obesity. Journal of Lipid Research, 2009, 50, S395-S399.	4.2	178
104	Plasma Adiponectin Complexes Have Distinct Biochemical Characteristics. Endocrinology, 2008, 149, 2270-2282.	2.8	177
105	Metabolic Messengers: adiponectin. Nature Metabolism, 2019, 1, 334-339.	11.9	177
106	Selective Downregulation of the High–Molecular Weight Form of Adiponectin in Hyperinsulinemia and in Type 2 Diabetes. Diabetes, 2007, 56, 2174-2177.	0.6	175
107	An Adipose Tissue Atlas: An Image-Guided Identification of Human-like BAT and Beige Depots in Rodents. Cell Metabolism, 2018, 27, 252-262.e3.	16.2	174
108	Systemic Fate of the Adipocyte-Derived Factor Adiponectin. Diabetes, 2009, 58, 1961-1970.	0.6	172

#	Article	IF	CITATIONS
109	Molecular Genetics of the Caveolin Gene Family: Implications for Human Cancers, Diabetes, Alzheimer Disease, and Muscular Dystrophy. American Journal of Human Genetics, 1998, 63, 1578-1587.	6.2	171
110	The Adipocyte as an Important Target Cell for Trypanosoma cruzi Infection. Journal of Biological Chemistry, 2005, 280, 24085-24094.	3.4	171
111	C/EBPα and the Corepressors CtBP1 and CtBP2 Regulate Repression of Select Visceral White Adipose Genes during Induction of the Brown Phenotype in White Adipocytes by Peroxisome Proliferator-Activated Receptor γ Agonists. Molecular and Cellular Biology, 2009, 29, 4714-4728.	2.3	170
112	Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metabolism, 2021, 33, 1853-1868.e11.	16.2	165
113	Crowded Little Caves. Cellular Signalling, 1998, 10, 457-463.	3.6	164
114	Obesity, Diabetes, and Cardiovascular Diseases. Circulation Research, 2016, 118, 1703-1705.	4.5	164
115	Adiponectin, Leptin and Cardiovascular Disorders. Circulation Research, 2021, 128, 136-149.	4.5	158
116	Chronic Intermittent Hypoxia Induces Atherosclerosis via Activation of Adipose Angiopoietin-like 4. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 240-248.	5.6	155
117	ACDC/Adiponectin Polymorphisms Are Associated With Severe Childhood and Adult Obesity. Diabetes, 2006, 55, 545-550.	0.6	154
118	Progressive Loss of β-Cell Function Leads to Worsening Glucose Tolerance in First-Degree Relatives of Subjects With Type 2 Diabetes. Diabetes Care, 2007, 30, 677-682.	8.6	152
119	Adipogenesis and metabolic health. Nature Reviews Molecular Cell Biology, 2019, 20, 242-258.	37.0	152
120	Cell Type-Specific Expression and Coregulation of Murine Resistin and Resistin-Like Molecule-α in Adipose Tissue. Molecular Endocrinology, 2002, 16, 1920-1930.	3.7	151
121	Role of resistin in diet-induced hepatic insulin resistance. Journal of Clinical Investigation, 2004, 114, 232-239.	8.2	151
122	microRNA-17 family promotes polycystic kidney disease progression through modulation of mitochondrial metabolism. Nature Communications, 2017, 8, 14395.	12.8	147
123	Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1-AMPK signaling. Journal of Clinical Investigation, 2011, 121, 2518-2528.	8.2	147
124	Adiponectin is critical in determining susceptibility to depressive behaviors and has antidepressant-like activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12248-12253.	7.1	145
125	Altered Mitochondrial Function and Metabolic Inflexibility Associated with Loss of Caveolin-1. Cell Metabolism, 2012, 15, 171-185.	16.2	145
126	Adiponectin Promotes Functional Recovery after Podocyte Ablation. Journal of the American Society of Nephrology: JASN, 2013, 24, 268-282.	6.1	142

#	Article	IF	CITATIONS
127	Adipocyte differentiation induces dynamic changes in NF-κB expression and activity. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E1178-E1188.	3.5	141
128	Loss of Resistin Improves Glucose Homeostasis in Leptin Deficiency. Diabetes, 2006, 55, 3083-3090.	0.6	141
129	Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis. Molecular Metabolism, 2017, 6, 267-275.	6.5	141
130	Keynote review: The adipocyte as a drug discovery target. Drug Discovery Today, 2005, 10, 1219-1230.	6.4	138
131	The Transcriptional Response of the Islet to Pregnancy in Mice. Molecular Endocrinology, 2009, 23, 1702-1712.	3.7	138
132	Enhanced Metabolic Flexibility Associated with Elevated Adiponectin Levels. American Journal of Pathology, 2010, 176, 1364-1376.	3.8	136
133	Caveolae, transmembrane signalling and cellular transformation. Molecular Membrane Biology, 1995, 12, 121-124.	2.0	135
134	Adipokines Linking Obesity with Colorectal Cancer Risk in Postmenopausal Women. Cancer Research, 2012, 72, 3029-3037.	0.9	135
135	Low- and high-thermogenic brown adipocyte subpopulations coexist in murine adipose tissue. Journal of Clinical Investigation, 2019, 130, 247-257.	8.2	134
136	Proangiogenic Contribution of Adiponectin toward Mammary Tumor Growth <i>In vivo</i> . Clinical Cancer Research, 2009, 15, 3265-3276.	7.0	133
137	Mechanisms of Trypanosoma cruzi persistence in Chagas disease. Cellular Microbiology, 2012, 14, 634-643.	2.1	133
138	A Role for the Caveolin Scaffolding Domain in Mediating the Membrane Attachment of Caveolin-1. Journal of Biological Chemistry, 1999, 274, 22660-22667.	3.4	132
139	Identification and Characterization of a Promoter Cassette Conferring Adipocyte-Specific Gene Expression. Endocrinology, 2010, 151, 2933-2939.	2.8	132
140	Beclin 2 Functions in Autophagy, Degradation of G Protein-Coupled Receptors, and Metabolism. Cell, 2013, 154, 1085-1099.	28.9	130
141	Cloning of cell-specific secreted and surface proteins by subtractive antibody screening. Nature Biotechnology, 1998, 16, 581-586.	17.5	127
142	Adipocyte, Adipose Tissue, and Infectious Disease. Infection and Immunity, 2007, 75, 1066-1078.	2.2	127
143	Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure. Molecular Metabolism, 2014, 3, 474-483.	6.5	126
144	Targeted Down-regulation of Caveolin-3 Is Sufficient to Inhibit Myotube Formation in Differentiating C2C12 Myoblasts. Journal of Biological Chemistry, 1999, 274, 30315-30321.	3.4	123

#	Article	IF	CITATIONS
145	Brain Adipocytokine Action and Metabolic Regulation. Diabetes, 2006, 55, S145-S154.	0.6	122
146	Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment. Cancer Biology and Therapy, 2011, 11, 383-394.	3.4	122
147	Evidence for Enhanced Adipogenesis in the Orbits of Patients with Graves' Ophthalmopathy. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 930-935.	3.6	121
148	Adiponectin Levels and Genotype: A Potential Regulator of Life Span in Humans. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 447-453.	3.6	121
149	Immunologic and endocrine functions of adipose tissue: implications for kidney disease. Nature Reviews Nephrology, 2018, 14, 105-120.	9.6	121
150	The delicate balance between fat and muscle: adipokines in metabolic disease and musculoskeletal inflammation. Current Opinion in Pharmacology, 2004, 4, 281-289.	3.5	120
151	Tumor Necrosis Factor α-Mediated Insulin Resistance, but Not Dedifferentiation, Is Abrogated by MEK1/2 Inhibitors in 3T3-L1 Adipocytes. Molecular Endocrinology, 2000, 14, 1557-1569.	3.7	119
152	[47] Caveolae purification and glycosylphosphatidylinositol-linked protein sorting in polarized epithelia. Methods in Enzymology, 1995, 250, 655-668.	1.0	117
153	Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nature Medicine, 2018, 24, 617-627.	30.7	117
154	Reversible De-differentiation of Mature White Adipocytes into Preadipocyte-like Precursors during Lactation. Cell Metabolism, 2018, 28, 282-288.e3.	16.2	116
155	A Dominant-negative p38 MAPK Mutant and Novel Selective Inhibitors of p38 MAPK Reduce Insulin-stimulated Glucose Uptake in 3T3-L1 Adipocytes without Affecting GLUT4 Translocation. Journal of Biological Chemistry, 2002, 277, 50386-50395.	3.4	115
156	The Xbp1s/GalE axis links ER stress to postprandial hepatic metabolism. Journal of Clinical Investigation, 2013, 123, 455-468.	8.2	115
157	Targeted Deletion of Adipocytes by Apoptosis Leads to Adipose Tissue Recruitment of Alternatively Activated M2 Macrophages. Endocrinology, 2011, 152, 3074-3081.	2.8	114
158	Melanocortin 4 receptors in autonomic neurons regulate thermogenesis and glycemia. Nature Neuroscience, 2014, 17, 911-913.	14.8	114
159	The many secret lives of adipocytes: implications for diabetes. Diabetologia, 2019, 62, 223-232.	6.3	114
160	Mutational analysis of caveolin-induced vesicle formation. FEBS Letters, 1998, 434, 127-134.	2.8	113
161	Mitochondrial Functional State in Clonal Pancreatic β-Cells Exposed to Free Fatty Acids. Journal of Biological Chemistry, 2003, 278, 19709-19715.	3.4	112
162	Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. Journal of Clinical Investigation, 2019, 129, 5327-5342.	8.2	112

#	Article	IF	CITATIONS
163	Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation. Nature Cell Biology, 2015, 17, 1099-1111.	10.3	111
164	Molecular and Cellular Biology of Caveolae. Trends in Cardiovascular Medicine, 1997, 7, 103-110.	4.9	108
165	Grb10 Promotes Lipolysis and Thermogenesis by Phosphorylation-Dependent Feedback Inhibition of mTORC1. Cell Metabolism, 2014, 19, 967-980.	16.2	106
166	Constitutively Active Mitogen-activated Protein Kinase Kinase 6 (MKK6) or Salicylate Induces Spontaneous 3T3-L1 Adipogenesis. Journal of Biological Chemistry, 1999, 274, 35630-35638.	3.4	104
167	Adiponectin and Leptin Levels in HIV-Infected Subjects With Insulin Resistance and Body Fat Redistribution. Journal of Acquired Immune Deficiency Syndromes (1999), 2002, 31, 514-520.	2.1	104
168	The Multifaceted Roles of Adipose Tissue—Therapeutic Targets for Diabetes and Beyond: The 2015 Banting Lecture. Diabetes, 2016, 65, 1452-1461.	0.6	104
169	The Membrane-spanning Domains of Caveolins-1 and -2 Mediate the Formation of Caveolin Hetero-oligomers. Journal of Biological Chemistry, 1999, 274, 18721-18728.	3.4	103
170	Lipid metabolism and adipokine levels in fatty acid-binding protein null and transgenic mice. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E814-E823.	3.5	103
171	Thromboxane A2 is a key regulator of pathogenesis during Trypanosoma cruzi infection. Journal of Experimental Medicine, 2007, 204, 929-940.	8.5	103
172	Impact of tamoxifen on adipocyte lineage tracing: Inducer of adipogenesis and prolonged nuclear translocation of Cre recombinase. Molecular Metabolism, 2015, 4, 771-778.	6.5	103
173	Weight loss and incretin responsiveness improve glucose control independently after gastric bypass surgery. Journal of Diabetes, 2010, 2, 47-55.	1.8	101
174	Fasting selectively blocks development of acute lymphoblastic leukemia via leptin-receptor upregulation. Nature Medicine, 2017, 23, 79-90.	30.7	101
175	Hypothalamic resistin induces hepatic insulin resistance. Journal of Clinical Investigation, 2007, 117, 1670-1678.	8.2	100
176	ATR/TEM8 is highly expressed in epithelial cells lining <i>Bacillus anthracis'</i> three sites of entry: implications for the pathogenesis of anthrax infection. American Journal of Physiology - Cell Physiology, 2005, 288, C1402-C1410.	4.6	98
177	Adipocytes: Impact on tumor growth and potential sites for therapeutic intervention. , 2013, 138, 197-210.		98
178	Cellular Origins of Beige Fat Cells Revisited. Diabetes, 2019, 68, 1874-1885.	0.6	98
179	Dermal Adipocytes: From Irrelevance to Metabolic Targets?. Trends in Endocrinology and Metabolism, 2016, 27, 1-10.	7.1	97
180	Caveolin-3 knockout mice show increased adiposity and whole body insulin resistance, with ligand-induced insulin receptor instability in skeletal muscle. American Journal of Physiology - Cell Physiology, 2005, 288, C1317-C1331.	4.6	94

#	Article	IF	CITATIONS
181	Evidence for Trypanosoma cruzi in adipose tissue in human chronic Chagas disease. Microbes and Infection, 2011, 13, 1002-1005.	1.9	94
182	Mouse and Human Resistins Impair Glucose Transport in Primary Mouse Cardiomyocytes, and Oligomerization Is Required for This Biological Action. Journal of Biological Chemistry, 2005, 280, 31679-31685.	3.4	93
183	Constitutive and Growth Factor-Regulated Phosphorylation of Caveolin-1 Occurs at the Same Site (Tyr-14) in Vivo: Identification of a c-Src/Cav-1/Grb7 Signaling Cassette. Molecular Endocrinology, 2000, 14, 1750-1775.	3.7	93
184	Paradoxical Elevation of High-Molecular Weight Adiponectin in Acquired Extreme Insulin Resistance Due to Insulin Receptor Antibodies. Diabetes, 2007, 56, 1712-1717.	0.6	91
185	Contributions of adipose tissue architectural and tensile properties toward defining healthy and unhealthy obesity. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E233-E246.	3.5	90
186	An adipo-biliary-uridine axis that regulates energy homeostasis. Science, 2017, 355, .	12.6	90
187	The Role of Proprotein Convertase Subtilisin/Kexin Type 9 in Nephrotic Syndrome-Associated Hypercholesterolemia. Circulation, 2016, 134, 61-72.	1.6	89
188	5-HT2CRs expressed by pro-opiomelanocortin neurons regulate insulin sensitivity in liver. Nature Neuroscience, 2010, 13, 1457-1459.	14.8	87
189	Selective enhancement of insulin sensitivity in the mature adipocyte is sufficient for systemic metabolic improvements. Nature Communications, 2015, 6, 7906.	12.8	87
190	VEGF-A–Expressing Adipose Tissue Shows Rapid Beiging and Enhanced Survival After Transplantation and Confers IL-4–Independent Metabolic Improvements. Diabetes, 2017, 66, 1479-1490.	0.6	87
191	Structure-guided Development of Specific Pyruvate Dehydrogenase Kinase Inhibitors Targeting the ATP-binding Pocket. Journal of Biological Chemistry, 2014, 289, 4432-4443.	3.4	85
192	A Role of the Inflammasome in the Low Storage Capacity of the Abdominal Subcutaneous Adipose Tissue in Obese Adolescents. Diabetes, 2016, 65, 610-618.	0.6	84
193	Adipose Tissue: A Safe Haven for Parasites?. Trends in Parasitology, 2017, 33, 276-284.	3.3	84
194	Optimization of Protein Production in Mammalian Cells with a Coexpressed Fluorescent Marker. Structure, 2004, 12, 1355-1360.	3.3	83
195	A Prospective Study of Inflammation Markers and Endometrial Cancer Risk in Postmenopausal Hormone Nonusers. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 971-977.	2.5	83
196	Plasma ceramides are elevated in female children and adolescents with type 2 diabetes. Journal of Pediatric Endocrinology and Metabolism, 2013, 26, 995-8.	0.9	83
197	Circulating Adipokines and Inflammatory Markers and Postmenopausal Breast Cancer Risk. Journal of the National Cancer Institute, 2015, 107, .	6.3	83
198	Adiponectin Resistance Exacerbates Insulin Resistance in Insulin Receptor Transgenic/Knockout Mice. Diabetes, 2007, 56, 1969-1976.	0.6	81

#	Article	IF	CITATIONS
199	Leptin Receptor Signaling Supports Cancer Cell Metabolism through Suppression of Mitochondrial Respiration in Vivo. American Journal of Pathology, 2010, 177, 3133-3144.	3.8	80
200	Connexin 43 Mediates White Adipose Tissue Beiging by Facilitating the Propagation of Sympathetic Neuronal Signals. Cell Metabolism, 2016, 24, 420-433.	16.2	80
201	Hyperglycemia in rodent models of type 2 diabetes requires insulin-resistant alpha cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13217-13222.	7.1	78
202	Inhibition of endotrophin, a cleavage product of collagen VI, confers cisplatin sensitivity to tumours. EMBO Molecular Medicine, 2013, 5, 935-948.	6.9	77
203	<scp>MED</scp> 13â€dependent signaling from the heart confers leanness by enhancing metabolism in adipose tissue and liver. EMBO Molecular Medicine, 2014, 6, 1610-1621.	6.9	77
204	Adenovirus-Mediated Adiponectin Expression Augments Skeletal Muscle Insulin Sensitivity in Male Wistar Rats. Diabetes, 2005, 54, 1304-1313.	0.6	76
205	Race–ethnic differences in adipokine levels: the Study of Women's Health Across the Nation (SWAN). Metabolism: Clinical and Experimental, 2012, 61, 1261-1269.	3.4	76
206	Adiponectin regulates contextual fear extinction and intrinsic excitability of dentate gyrus granule neurons through AdipoR2 receptors. Molecular Psychiatry, 2017, 22, 1044-1055.	7.9	76
207	Adipocyte-Specific Deletion of Manganese Superoxide Dismutase Protects From Diet-Induced Obesity Through Increased Mitochondrial Uncoupling and Biogenesis. Diabetes, 2016, 65, 2639-2651.	0.6	75
208	Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes β-cell regeneration. ELife, 2014, 3, .	6.0	74
209	Resistin, but Not Adiponectin and Leptin, Is Associated With the Risk of Ischemic Stroke Among Postmenopausal Women. Stroke, 2011, 42, 1813-1820.	2.0	73
210	Obesity, Diabetes, and Increased Cancer Progression. Diabetes and Metabolism Journal, 2021, 45, 799-812.	4.7	73
211	Fat-cell mass, serum leptin and adiponectin changes during weight gain and loss in yellow-bellied marmots (Marmota flaviventris). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2004, 174, 633-639.	1.5	71
212	Trypanosoma cruzi Utilizes the Host Low Density Lipoprotein Receptor in Invasion. PLoS Neglected Tropical Diseases, 2011, 5, e953.	3.0	71
213	Ronning After the Adiponectin Receptors. Science, 2013, 342, 1460-1461.	12.6	71
214	Adipose Tissue Biology and Cardiomyopathy. Circulation Research, 2012, 111, 1565-1577.	4.5	70
215	Src-induced Phosphorylation of Caveolin-2 on Tyrosine 19. Journal of Biological Chemistry, 2002, 277, 34556-34567.	3.4	69
216	Obesity and diabetes as comorbidities for COVID-19: Underlying mechanisms and the role of viral–bacterial interactions. ELife, 2020, 9, .	6.0	69

#	Article	IF	CITATIONS
217	Improved methodologies for the study of adipose biology: insights gained and opportunities ahead. Journal of Lipid Research, 2014, 55, 605-624.	4.2	68
218	Fat-Specific DsbA-L Overexpression Promotes Adiponectin Multimerization and Protects Mice From Diet-Induced Obesity and Insulin Resistance. Diabetes, 2012, 61, 2776-2786.	0.6	67
219	First Clinical Release of an Online, Adaptive, Aperture-Based Image-Guided Radiotherapy Strategy in Intensity-Modulated Radiotherapy to Correct for Inter- and Intrafractional Rotations of the Prostate. International Journal of Radiation Oncology Biology Physics, 2012, 83, 1624-1632.	0.8	67
220	Relation of plasma ceramides to visceral adiposity, insulin resistance and the development of type 2 diabetes mellitus: the Dallas Heart Study. Diabetologia, 2018, 61, 2570-2579.	6.3	67
221	Lipotoxicity and \hat{I}^2 Cell Maintenance in Obesity and Type 2 Diabetes. Journal of the Endocrine Society, 2019, 3, 617-631.	0.2	67
222	Chromosomal Localization, Expression Pattern, and Promoter Analysis of the Mouse Gene Encoding Adipocyte-Specific Secretory Protein Acrp30. Biochemical and Biophysical Research Communications, 2001, 280, 1120-1129.	2.1	66
223	Combined Loss of INK4a and Caveolin-1 Synergistically Enhances Cell Proliferation and Oncogene-induced Tumorigenesis. Journal of Biological Chemistry, 2004, 279, 24745-24756.	3.4	66
224	Role of Transcription Factor NFAT in Glucose and Insulin Homeostasis. Molecular and Cellular Biology, 2006, 26, 7372-7387.	2.3	66
225	MitoNEET-mediated effects on browning of white adipose tissue. Nature Communications, 2014, 5, 3962.	12.8	66
226	Leptin: Less Is More. Diabetes, 2020, 69, 823-829.	0.6	66
227	Within-Individual Stability of Obesity-Related Biomarkers among Women. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 1291-1293.	2.5	65
228	Morphogenesis of the developing mammary gland: Stage-dependent impact of adipocytes. Developmental Biology, 2010, 344, 968-978.	2.0	65
229	HDAC11 suppresses the thermogenic program of adipose tissue via BRD2. JCI Insight, 2018, 3, .	5.0	65
230	Adiponectin is an endogenous anti-fibrotic mediator and therapeutic target. Scientific Reports, 2017, 7, 4397.	3.3	64
231	Intracellular Trafficking and Secretion of Adiponectin Is Dependent on GGA-coated Vesicles. Journal of Biological Chemistry, 2006, 281, 7253-7259.	3.4	62
232	Response of Adipose Tissue to Early Infection With Trypanosoma cruzi (Brazil Strain). Journal of Infectious Diseases, 2012, 205, 830-840.	4.0	62
233	<i>Trypanosoma cruzi</i> Infection of Cultured Adipocytes Results in an Inflammatory Phenotype. Obesity, 2008, 16, 1992-1997.	3.0	60
234	Lack of Association Between Adiponectin Levels and Atherosclerosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1159-1165.	2.4	60

#	Article	IF	CITATIONS
235	PANIC-ATTAC: A Mouse Model for Inducible and Reversible Î ² -Cell Ablation. Diabetes, 2008, 57, 2137-2148.	0.6	59
236	Leptin and cancer: from cancer stem cells to metastasis. Endocrine-Related Cancer, 2011, 18, C25-C29.	3.1	59
237	Obese Mice Lacking Inducible Nitric Oxide Synthase Are Sensitized to the Metabolic Actions of Peroxisome Proliferator–Activated Receptor-γ Agonism. Diabetes, 2008, 57, 1999-2011.	0.6	57
238	Inflammation and ER Stress Regulate Branched-Chain Amino Acid Uptake and Metabolism in Adipocytes. Molecular Endocrinology, 2015, 29, 411-420.	3.7	57
239	The primary sequence of murine caveolin reveals a conserved consensus site for phosphorylation by protein kinase C. Gene, 1994, 147, 299-300.	2.2	56
240	Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion. Nature Communications, 2016, 7, 10686.	12.8	56
241	Angiopoietin-2 in white adipose tissue improves metabolic homeostasis through enhanced angiogenesis. ELife, 2017, 6, .	6.0	56
242	Renal tubular cell spliced X-box binding protein 1 (Xbp1s) has a unique role in sepsis-induced acute kidney injury and inflammation. Kidney International, 2019, 96, 1359-1373.	5.2	56
243	Critical Role of Matrix Metalloproteinase 14 in Adipose Tissue Remodeling during Obesity. Molecular and Cellular Biology, 2020, 40, .	2.3	56
244	High Fat Diet Modulates Trypanosoma cruzi Infection Associated Myocarditis. PLoS Neglected Tropical Diseases, 2014, 8, e3118.	3.0	55
245	PPARÎ ³ in Vagal Neurons Regulates High-Fat Diet Induced Thermogenesis. Cell Metabolism, 2014, 19, 722-730.	16.2	55
246	MitoNEET-Parkin Effects in Pancreatic α- and β-Cells, Cellular Survival, and Intrainsular Cross Talk. Diabetes, 2016, 65, 1534-1555.	0.6	55
247	Association of Phosphofructokinase-M with Caveolin-3 in Differentiated Skeletal Myotubes. Journal of Biological Chemistry, 1997, 272, 20698-20705.	3.4	54
248	Effects of Adiponectin on Calcium-Handling Proteins in Heart Failure With Preserved Ejection Fraction. Circulation: Heart Failure, 2014, 7, 976-985.	3.9	54
249	Proteinuria Increases Plasma Phosphate by Altering Its Tubular Handling. Journal of the American Society of Nephrology: JASN, 2015, 26, 1608-1618.	6.1	53
250	Adiponectin potentiates the acute effects of leptin in arcuate Pomc neurons. Molecular Metabolism, 2016, 5, 882-891.	6.5	53
251	Vascular Endothelial Growth Factor–DÂ(VEGF-D) Overexpression and Lymphatic Expansion in Murine Adipose Tissue Improves Metabolism in Obesity. American Journal of Pathology, 2019, 189, 924-939.	3.8	53
252	XBP1S Regulates MUC5B in a Promoter Variant–Dependent Pathway in Idiopathic Pulmonary Fibrosis Airway Epithelia. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 220-234.	5.6	53

#	Article	IF	CITATIONS
253	Impact of Simvastatin on Adipose Tissue: Pleiotropic Effects in Vivo. Endocrinology, 2009, 150, 5262-5272.	2.8	52
254	Adiponectin Regulation of Stellate Cell Activation via PPARÎ ³ -Dependent and -Independent Mechanisms. American Journal of Pathology, 2011, 178, 2690-2699.	3.8	51
255	Post-acute sequelae of COVID-19: A metabolic perspective. ELife, 2022, 11, .	6.0	51
256	Adipose tissue fatty acid chain length and mono-unsaturation increases with obesity and insulin resistance. Scientific Reports, 2015, 5, 18366.	3.3	50
257	Dermal adipocytes and hair cycling: is spatial heterogeneity a characteristic feature of the dermal adipose tissue depot?. Experimental Dermatology, 2016, 25, 258-262.	2.9	50
258	Adipocyte iron levels impinge on a fat-gut crosstalk to regulate intestinal lipid absorption and mediate protection from obesity. Cell Metabolism, 2021, 33, 1624-1639.e9.	16.2	50
259	Heart Failure With Preserved Ejection Fraction Induces Beiging in Adipose Tissue. Circulation: Heart Failure, 2016, 9, e002724.	3.9	49
260	MitoNEET-dependent formation of intermitochondrial junctions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8277-8282.	7.1	49
261	Adiponectin modulates ventral tegmental area dopamine neuron activity and anxiety-related behavior through AdipoR1. Molecular Psychiatry, 2019, 24, 126-144.	7.9	49
262	Partial leptin deficiency confers resistance to diet-induced obesity in mice. Molecular Metabolism, 2020, 37, 100995.	6.5	49
263	Caveolin-1 Expression Is Essential for Proper Nonshivering Thermogenesis in Brown Adipose Tissue. Diabetes, 2005, 54, 679-686.	0.6	48
264	Analytical Validation and Biological Evaluation of a High–Molecular-Weight Adiponectin ELISA. Clinical Chemistry, 2007, 53, 2144-2151.	3.2	48
265	Rgs16 and Rgs8 in embryonic endocrine pancreas and mouse models of diabetes. DMM Disease Models and Mechanisms, 2010, 3, 567-580.	2.4	48
266	Human endotrophin as a driver of malignant tumor growth. JCl Insight, 2019, 4, .	5.0	48
267	Skin aging: are adipocytes the next target?. Aging, 2016, 8, 1457-1469.	3.1	48
268	VGF Ablation Blocks the Development of Hyperinsulinemia and Hyperglycemia in Several Mouse Models of Obesity. Endocrinology, 2005, 146, 5151-5163.	2.8	47
269	Intermittent Hypoxia Exacerbates Pancreatic β-Cell Dysfunction in A Mouse Model of Diabetes Mellitus. Sleep, 2013, 36, 1849-1858.	1.1	47
270	The AdipoChaser mouse. Adipocyte, 2014, 3, 146-150.	2.8	47

#	Article	IF	CITATIONS
271	Suppressing adipocyte inflammation promotes insulin resistance in mice. Molecular Metabolism, 2020, 39, 101010.	6.5	47
272	DsbA-L is a versatile player in adiponectin secretion. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18077-18078.	7.1	46
273	Adipocyte-Derived Factors Potentiate Nutrient-Induced Production of Plasminogen Activator Inhibitor–1 by Macrophages. Science Translational Medicine, 2010, 2, 20ra15.	12.4	46
274	Adiponectin Decreases Pulmonary Arterial Remodeling in Murine Models of Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 340-347.	2.9	46
275	Adiponectin: no longer the lone soul in the fight against insulin resistance?. Biochemical Journal, 2008, 416, e7-e9.	3.7	45
276	Adiponectin alters renal calcium and phosphate excretion through regulation of klotho expression. Kidney International, 2017, 91, 324-337.	5.2	45
277	Cyclin D1 Restrains Oncogene-Induced Autophagy by Regulating the AMPK–LKB1 Signaling Axis. Cancer Research, 2017, 77, 3391-3405.	0.9	45
278	Skin aging as a mechanical phenomenon: The main weak links. Nutrition and Healthy Aging, 2018, 4, 291-307.	1.1	45
279	Elevated resistin levels induce central leptin resistance and increased atherosclerotic progression in mice. Diabetologia, 2014, 57, 1209-1218.	6.3	44
280	Obesity dysregulates fasting-induced changes in glucagon secretion. Journal of Endocrinology, 2019, 243, 149-160.	2.6	44
281	Phenotypic behavior of caveolin-3 R26Q, a mutant associated with hyperCKemia, distal myopathy, and rippling muscle disease. American Journal of Physiology - Cell Physiology, 2003, 285, C1150-C1160.	4.6	43
282	The adipokine/ceramide axis: Key aspects of insulin sensitization. Biochimie, 2014, 96, 130-139.	2.6	43
283	Conditional MitoTimer reporter mice for assessment of mitochondrial structure, oxidative stress, and mitophagy. Mitochondrion, 2019, 44, 20-26.	3.4	43
284	Endotrophin - Linking Obesity with Aggressive Tumor Growth. Oncotarget, 2012, 3, 1487-1488.	1.8	43
285	Mouse models of lipodystrophy: Key reagents for the understanding of the metabolic syndrome. Drug Discovery Today: Disease Models, 2007, 4, 17-24.	1.2	42
286	The Role of Immature and Mature Adipocytes in Hair Cycling. Trends in Endocrinology and Metabolism, 2019, 30, 93-105.	7.1	42
287	Pantophysin Is a Phosphoprotein Component of Adipocyte Transport Vesicles and Associates with GLUT4-containing Vesicles. Journal of Biological Chemistry, 2000, 275, 2029-2036.	3.4	41
288	Adiponectin-Mediated Antilipotoxic Effects in Regenerating Pancreatic Islets. Endocrinology, 2015, 156, 2019-2028.	2.8	41

#	Article	IF	CITATIONS
289	Hyaluronan in adipogenesis, adipose tissue physiology and systemic metabolism. Matrix Biology, 2019, 78-79, 284-291.	3.6	41
290	Prolactin Negatively Regulates Caveolin-1 Gene Expression in the Mammary Gland during Lactation, via a Ras-dependent Mechanism. Journal of Biological Chemistry, 2001, 276, 48389-48397.	3.4	40
291	Spliced X-box Binding Protein 1 Stimulates Adaptive Growth Through Activation of mTOR. Circulation, 2019, 140, 566-579.	1.6	40
292	The Role of Ceramides in Diabetes and Cardiovascular Disease Regulation of Ceramides by Adipokines. Frontiers in Endocrinology, 2020, 11, 569250.	3.5	40
293	Adiponectin as an Independent Predictor of the Presence and Degree of Hepatic Steatosis in the Dallas Heart Study. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E982-E986.	3.6	39
294	ERα upregulates Phd3 to ameliorate HIF-1 induced fibrosis and inflammation in adipose tissue. Molecular Metabolism, 2014, 3, 642-651.	6.5	39
295	Dysregulation of amyloid precursor protein impairs adipose tissue mitochondrial function and promotes obesity. Nature Metabolism, 2019, 1, 1243-1257.	11.9	39
296	Integrated Stress Response Couples Mitochondrial Protein Translation With Oxidative Stress Control. Circulation, 2021, 144, 1500-1515.	1.6	39
297	MKR mice are resistant to the metabolic actions of both insulin and adiponectin: discordance between insulin resistance and adiponectin responsiveness. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E298-E305.	3.5	38
298	Differential Binding of Cross-Reactive Anti-DNA Antibodies to Mesangial Cells: The Role of α-Actinin. Journal of Immunology, 2006, 176, 7704-7714.	0.8	38
299	Enhanced Fatty Acid Flux Triggered by Adiponectin Overexpression. Endocrinology, 2012, 153, 113-122.	2.8	38
300	Lack of "immunological fitness―during fasting in metabolically challenged animals. Journal of Lipid Research, 2012, 53, 1254-1267.	4.2	37
301	Effect of pioglitazone on plasma ceramides in adults with metabolic syndrome. Diabetes/Metabolism Research and Reviews, 2015, 31, 734-744.	4.0	37
302	Acute loss of adipose tissue-derived adiponectin triggers immediate metabolic deterioration in mice. Diabetologia, 2018, 61, 932-941.	6.3	37
303	Adiponectin preserves metabolic fitness during aging. ELife, 2021, 10, .	6.0	37
304	SF-1 expression in the hypothalamus is required for beneficial metabolic effects of exercise. ELife, 2016, 5, .	6.0	37
305	The adipokine SAA3 is induced by interleukinâ€l β in mouse adipocytes. Journal of Cellular Biochemistry, 2008, 104, 2241-2247.	2.6	36
306	High-Phosphate Diet Induces Exercise Intolerance and Impairs Fatty Acid Metabolism in Mice. Circulation, 2019, 139, 1422-1434.	1.6	36

#	Article	IF	CITATIONS
307	Insulin-sensitizing effects of thiazolidinediones are not linked to adiponectin receptor expression in human fat or muscle. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1301-E1307.	3.5	35
308	Ceramides and cardiac function in children with chronic kidney disease. Pediatric Nephrology, 2014, 29, 415-422.	1.7	35
309	Hepatocyte toll-like receptor 4 deficiency protects against alcohol-induced fatty liver disease. Molecular Metabolism, 2018, 14, 121-129.	6.5	35
310	Hepatocyte Growth Factor and the Risk of Ischemic Stroke Developing Among Postmenopausal Women. Stroke, 2010, 41, 857-862.	2.0	34
311	Neuregulin 1-HER axis as a key mediator of hyperglycemic memory effects in breast cancer. Proceedings of the United States of America, 2012, 109, 21058-21063.	7.1	34
312	Adipose HIF-1α causes obesity by suppressing brown adipose tissue thermogenesis. Journal of Molecular Medicine, 2017, 95, 287-297.	3.9	34
313	Adipocyte Xbp1s overexpression drives uridine production and reduces obesity. Molecular Metabolism, 2018, 11, 1-17.	6.5	34
314	Caveolae and human disease: functional roles in transcytosis, potocytosis, signalling and cell polarity. Seminars in Developmental Biology, 1995, 6, 47-58.	1.3	33
315	Transcriptional Regulation of Dentin Matrix Protein 1 by JunB and p300 during Osteoblast Differentiation. Journal of Biological Chemistry, 2004, 279, 44294-44302.	3.4	33
316	The Anatomical Basis for Wrinkles. Aesthetic Surgery Journal, 2014, 34, 227-234.	1.6	33
317	Peroxisome Proliferator-Activated Receptor <i>γ</i> and Its Role in Adipocyte Homeostasis and Thiazolidinedione-Mediated Insulin Sensitization. Molecular and Cellular Biology, 2018, 38, .	2.3	33
318	Intracellular lipid metabolism impairs Î ² cell compensation during diet-induced obesity. Journal of Clinical Investigation, 2018, 128, 1178-1189.	8.2	33
319	A Novel Model of Diabetic Complications: Adipocyte Mitochondrial Dysfunction Triggers Massive β-Cell Hyperplasia. Diabetes, 2020, 69, 313-330.	0.6	33
320	Mitochondrial metabolism is a key regulator of the fibro-inflammatory and adipogenic stromal subpopulations in white adipose tissue. Cell Stem Cell, 2021, 28, 702-717.e8.	11.1	33
321	Phosphofructokinase Muscle-Specific Isoform Requires Caveolin-3 Expression for Plasma Membrane Recruitment and Caveolar Targeting. American Journal of Pathology, 2003, 163, 2619-2634.	3.8	32
322	Chagas disease, adipose tissue and the metabolic syndrome. Memorias Do Instituto Oswaldo Cruz, 2009, 104, 219-225.	1.6	32
323	Crucial Role of the Central Leptin Receptor in Murine <i>Trypanosoma cruzi</i> (Brazil Strain) Infection. Journal of Infectious Diseases, 2010, 202, 1104-1113.	4.0	32
324	Purification of Caveolae-Derived Membrane Microdomains Containing Lipid-Anchored Signaling Molecules, Such as GPI-Anchored Proteins, H-Ras, Src-Family Tyrosine Kinases, eNOS, and G-Protein α-, β-, and γ-Subunits. , 1999, 116, 51-60.		31

#	Article	IF	CITATIONS
325	Short-Term Versus Long-Term Effects of Adipocyte Toll-Like Receptor 4 Activation on Insulin Resistance in Male Mice. Endocrinology, 2017, 158, 1260-1270.	2.8	31
326	Endotrophin, a multifaceted player in metabolic dysregulation and cancer progression, is a predictive biomarker for the response to PPARÎ ³ agonist treatment. Diabetologia, 2017, 60, 24-29.	6.3	31
327	Intercellular and interorgan crosstalk through adipocyte extracellular vesicles. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 61-69.	5.7	31
328	SREBP-regulated adipocyte lipogenesis is dependent on substrate availability and redox modulation of mTORC1. JCI Insight, 2019, 4, .	5.0	31
329	Alterations in Glucose Homeostasis in a Murine Model of Chagas Disease. American Journal of Pathology, 2013, 182, 886-894.	3.8	30
330	Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease. Microbes and Infection, 2014, 16, 893-901.	1.9	30
331	Glucose-regulated protein 78 is essential for cardiac myocyte survival. Cell Death and Differentiation, 2018, 25, 2181-2194.	11.2	30
332	COL6A3â€derived endotrophin links reciprocal interactions among hepatic cells in the pathology of chronic liver disease. Journal of Pathology, 2019, 247, 99-109.	4.5	30
333	Diffuse vesicular distribution of Rab3D in the polarized neuroendocrine cell line AtT-20. FEBS Letters, 1995, 368, 271-275.	2.8	29
334	Cyclin and Caveolin Expression in an Acute Model of Murine Chagasic Myocarditis. Cell Cycle, 2006, 5, 107-112.	2.6	29
335	E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte. Molecular Metabolism, 2015, 4, 653-664.	6.5	29
336	Serum Amyloid A3 Gene Expression in Adipocytes is an Indicator of the Interaction with Macrophages. Scientific Reports, 2016, 6, 38697.	3.3	29
337	Glucagon blockade restores functional Î ² -cell mass in type 1 diabetic mice and enhances function of human islets. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	29
338	Preexisting and inducible endotoxemia as crucial contributors to the severity of COVID-19 outcomes. PLoS Pathogens, 2021, 17, e1009306.	4.7	29
339	The mitochondrial dicarboxylate carrier prevents hepatic lipotoxicity by inhibiting white adipocyte lipolysis. Journal of Hepatology, 2021, 75, 387-399.	3.7	29
340	Mitochondrial regulation and white adipose tissue homeostasis. Trends in Cell Biology, 2022, 32, 351-364.	7.9	29
341	Predominant expression of the mitochondrial dicarboxylate carrier in white adipose tissue. Biochemical Journal, 1999, 344, 313-320.	3.7	28
342	Apoptosis Through Targeted Activation of Caspase8 ("ATTAC-miceâ€): Novel Mouse Models of Inducible and Reversible Tissue Ablation. Cell Cycle, 2005, 4, 1141-1145.	2.6	28

#	Article	IF	CITATIONS
343	PAQRs: A Counteracting Force to Ceramides?: Figure 1 Molecular Pharmacology, 2009, 75, 740-743.	2.3	27
344	Comparison of two different rectal spacers in prostate cancer external beam radiotherapy in terms of rectal sparing and volume consistency. Radiotherapy and Oncology, 2015, 116, 221-225.	0.6	27
345	Sex differences in adult rat insulin and glucose responses to arginine: programming effects of neonatal separation, hypoxia, and hypothermia. Physiological Reports, 2016, 4, e12972.	1.7	27
346	Hyaluronan in adipose tissue: Beyond dermal filler and therapeutic carrier. Science Translational Medicine, 2016, 8, 323ps4.	12.4	27
347	Evolutionarily Conserved Role of Calcineurin in Phosphodegron-Dependent Degradation of Phosphodiesterase 4D. Molecular and Cellular Biology, 2010, 30, 4379-4390.	2.3	26
348	Dapagliflozin suppresses glucagon signaling in rodent models of diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6611-6616.	7.1	26
349	Adiponectin protects against incident hypertension independent of body fat distribution: observations from the Dallas Heart Study. Diabetes/Metabolism Research and Reviews, 2017, 33, e2840.	4.0	26
350	Caveolin-1 as a pathophysiological factor and target in psoriasis. Npj Aging and Mechanisms of Disease, 2019, 5, 4.	4.5	26
351	A feed-forward regulatory loop in adipose tissue promotes signaling by the hepatokine FGF21. Genes and Development, 2021, 35, 133-146.	5.9	26
352	ATF4 Protects the Heart From Failure by Antagonizing Oxidative Stress. Circulation Research, 2022, 131, 91-105.	4.5	26
353	Associations of testosterone and sex hormone binding globulin with adipose tissue hormones in midlife women. Obesity, 2013, 21, 629-636.	3.0	25
354	Compromised responses to dietary methionine restriction in adipose tissue but not liver of <i>ob</i> / <i>ob</i> mice. Obesity, 2015, 23, 1836-1844.	3.0	25
355	The dysfunctional adipocyte — a cancer cell's best friend. Nature Reviews Endocrinology, 2018, 14, 132-134.	9.6	25
356	Adipocyte Gs but not Gi signaling regulates whole-body glucose homeostasis. Molecular Metabolism, 2019, 27, 11-21.	6.5	25
357	Caveolin-1 in skin aging – From innocent bystander to major contributor. Ageing Research Reviews, 2019, 55, 100959.	10.9	25
358	The impact of endotrophin on the progression of chronic liver disease. Experimental and Molecular Medicine, 2020, 52, 1766-1776.	7.7	25
359	Molecular Cloning and Developmental Expression of the Caveolin Gene Family in the AmphibianXenopus laevisâ€,â€j. Biochemistry, 2002, 41, 7914-7924.	2.5	24
360	Adiponectin and cardiovascular risk profile in patients with type 2 diabetes mellitus: parameters associated with adiponectin complex distribution. Diabetes and Vascular Disease Research, 2011, 8, 190-194.	2.0	24

#	Article	IF	CITATIONS
361	Hepatic GALE Regulates Whole-Body Glucose Homeostasis by Modulating <i>Tff3</i> Expression. Diabetes, 2017, 66, 2789-2799.	0.6	24
362	Dichotomous roles of leptin and adiponectin as enforcers against lipotoxicity during feast and famine. Molecular Biology of the Cell, 2013, 24, 3011-3015.	2.1	23
363	Markers of oxidative stress in adipose tissue during Trypanosoma cruzi infection. Parasitology Research, 2014, 113, 3159-3165.	1.6	23
364	PKM1 Exerts Critical Roles in Cardiac Remodeling Under Pressure Overload in the Heart. Circulation, 2021, 144, 712-727.	1.6	23
365	Cannabinoid receptor 1 signaling in hepatocytes and stellate cells does not contribute to NAFLD. Journal of Clinical Investigation, 2021, 131, .	8.2	23
366	Lumenal protein sorting to the constitutive secretory pathway of a regulated secretory cell. Journal of Cell Science, 2006, 119, 1833-1842.	2.0	22
367	Retrograde Lymph Flow Leads to Chylothorax in Transgenic Mice with Lymphatic Malformations. American Journal of Pathology, 2017, 187, 1984-1997.	3.8	22
368	Lowering ceramides to overcome diabetes. Science, 2019, 365, 319-320.	12.6	22
369	Caveolin-1 as a target in prevention and treatment of hypertrophic scarring. Npj Regenerative Medicine, 2019, 4, 9.	5.2	22
370	Adipose Tissue, Diabetes and Chagas Disease. Advances in Parasitology, 2011, 76, 235-250.	3.2	21
371	Serum adiponectin complexes and cardiovascular risk in children with chronic kidney disease. Pediatric Nephrology, 2011, 26, 2009-2017.	1.7	21
372	A NovelADIPOQMutation (p.M40K) Impairs Assembly of High-Molecular-Weight Adiponectin and Is Associated With Early-Onset Obesity and Metabolic Syndrome. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E683-E693.	3.6	21
373	Loss of the liver X receptor LXRα/β in peripheral sensory neurons modifies energy expenditure. ELife, 2015, 4, .	6.0	21
374	Analysis of compensatory β-cell response in mice with combined mutations of Insr and Irs2. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1694-E1701.	3.5	20
375	Glucagon therapeutics: Dawn of a new era for diabetes care. Diabetes/Metabolism Research and Reviews, 2016, 32, 660-665.	4.0	20
376	Are dermal adipocytes involved in psoriasis?. Experimental Dermatology, 2016, 25, 812-813.	2.9	20
377	Loss of Tbk1 kinase activity protects mice from diet-induced metabolic dysfunction. Molecular Metabolism, 2018, 16, 139-149.	6.5	20
378	Remodeling of Murine Mammary Adipose Tissue during Pregnancy, Lactation, and Involution. Journal of Mammary Gland Biology and Neoplasia, 2019, 24, 207-212.	2.7	20

#	Article	IF	CITATIONS
379	Serum adiponectin is related to plasma high-density lipoprotein cholesterol but not to plasma insulin-concentration in healthy children: the FLVS II study. Metabolism: Clinical and Experimental, 2006, 55, 1171-1176.	3.4	19
380	Role of Extracellular Signal-regulated Kinase 5 in Adipocyte Signaling. Journal of Biological Chemistry, 2014, 289, 6311-6322.	3.4	19
381	Maternal Adiponectin Controls Milk Composition to Prevent Neonatal Inflammation. Endocrinology, 2015, 156, 1504-1513.	2.8	19
382	Klotho regulation by albuminuria is dependent on ATF3 and endoplasmic reticulum stress. FASEB Journal, 2020, 34, 2087-2104.	0.5	19
383	Role of ceramide-to-dihydroceramide ratios for insulin resistance and non-alcoholic fatty liver disease in humans. BMJ Open Diabetes Research and Care, 2020, 8, e001860.	2.8	19
384	Adipocyteâ€nyofibroblast transition as a possible pathophysiological step in androgenetic alopecia. Experimental Dermatology, 2017, 26, 522-523.	2.9	18
385	Dermal adipocytes contribute to the metabolic regulation of dermal fibroblasts. Experimental Dermatology, 2021, 30, 102-111.	2.9	18
386	General theory of skin reinforcement. PLoS ONE, 2017, 12, e0182865.	2.5	18
387	Mechanisms Regulating Repression of Haptoglobin Production by Peroxisome Proliferator-Activated Receptor-Î ³ Ligands in Adipocytes. Endocrinology, 2010, 151, 586-594.	2.8	17
388	Differential transendothelial transport of adiponectin complexes. Cardiovascular Diabetology, 2014, 13, 47.	6.8	17
389	Characterization of ALTO-encoding circular RNAs expressed by Merkel cell polyomavirus and trichodysplasia spinulosa polyomavirus. PLoS Pathogens, 2021, 17, e1009582.	4.7	17
390	Ablation of Calcineurin Aβ Reveals Hyperlipidemia and Signaling Cross-talks with Phosphodiesterases. Journal of Biological Chemistry, 2013, 288, 3477-3488.	3.4	16
391	Advances in our understanding of adipose tissue homeostasis. Nature Reviews Endocrinology, 2015, 11, 71-72.	9.6	16
392	Na v 1.8 neurons are involved in limiting acute phase responses to dietary fat. Molecular Metabolism, 2017, 6, 1081-1091.	6.5	16
393	Peroxisome proliferator-activated receptor \hat{I}^3 agonists inhibit adipocyte expression of $\hat{I}\pm 1$ -acid glycoprotein. Cell Biology International, 2007, 31, 586-591.	3.0	15
394	The PPARγ-FGF1 axis: an unexpected mediator of adipose tissue homeostasis. Cell Research, 2012, 22, 1416-1418.	12.0	15
395	Endotrophin in the tumor stroma: a new therapeutic target for breast cancer?. Expert Review of Anticancer Therapy, 2013, 13, 111-113.	2.4	15
396	The MMP14–caveolin axis and its potential relevance for lipoedema. Nature Reviews Endocrinology, 2020, 16, 669-674.	9.6	15

#	Article	IF	CITATIONS
397	Adipose tissue hyaluronan production improves systemic glucose homeostasis and primes adipocytes for CL 316,243-stimulated lipolysis. Nature Communications, 2021, 12, 4829.	12.8	15
398	Predominant expression of the mitochondrial dicarboxylate carrier in white adipose tissue. Biochemical Journal, 1999, 344, 313.	3.7	14
399	Autonomous interconversion between adult pancreatic α-cells and β-cells after differential metabolic challenges. Molecular Metabolism, 2016, 5, 437-448.	6.5	14
400	Fat tissue regulates the pathogenesis and severity of cardiomyopathy in murine chagas disease. PLoS Neglected Tropical Diseases, 2021, 15, e0008964.	3.0	14
401	Management of cranial and craniofacial bone defects with prefabricated individual titanium implants: follow-up and evaluation of 166 patients with 169 titanium implants from 1994 to 2000. International Journal of Computer Assisted Radiology and Surgery, 2006, 1, 197-203.	2.8	13
402	Dietary n-3 polyunsaturated fatty acids fail to reduce prostate tumorigenesis in the PB-ErbB-2 x Pten ^{+/-} preclinical mouse model. Cell Cycle, 2010, 9, 1824-1829.	2.6	13
403	Gender differences in adiponectin modulation of cardiac remodeling in mice deficient in endothelial nitric oxide synthase. Journal of Cellular Biochemistry, 2012, 113, 3276-3287.	2.6	13
404	Adiponectin. Circulation Research, 2016, 119, 407-408.	4.5	13
405	Imaging Metabolically Active Fat: A Literature Review and Mechanistic Insights. International Journal of Molecular Sciences, 2019, 20, 5509.	4.1	13
406	Caveolin as a Universal Target in Dermatology. International Journal of Molecular Sciences, 2020, 21, 80.	4.1	13
407	Regulation of cold-induced thermogenesis by the RNA binding protein FAM195A. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
408	PEGylated AdipoRon derivatives improve glucose and lipid metabolism under insulinopenic and high-fat diet conditions. Journal of Lipid Research, 2021, 62, 100095.	4.2	13
409	Adiponectin and cardiometabolic trait and mortality: where do we go?. Cardiovascular Research, 2022, 118, 2074-2084.	3.8	13
410	Relationship between Changes in Plasma Adiponectin Concentration and Insulin Sensitivity after Niacin Therapy. CardioRenal Medicine, 2012, 2, 211-217.	1.9	12
411	New zoning laws enforced by glucagon. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4308-4310.	7.1	12
412	Utility of Adipocyte Fractions in Fat Grafting in an Athymic Rat Model. Aesthetic Surgery Journal, 2018, 38, 1363-1373.	1.6	12
413	Mouse Adipose Tissue Protein Extraction. Bio-protocol, 2020, 10, e3631.	0.4	12
414	The metabolic syndrome, thiazolidinediones, and implications for intersection of chronic and inflammatory disease. Molecular Metabolism, 2022, 55, 101409.	6.5	12

#	Article	IF	CITATIONS
415	Preface. Best Practice and Research in Clinical Endocrinology and Metabolism, 2014, 28, 1-2.	4.7	11
416	Receptors grease the metabolic wheels. Nature, 2017, 544, 42-43.	27.8	11
417	Pathological Type-2 Immune Response, Enhanced Tumor Growth, and Glucose Intolerance in Retnlβ (RELMβ) Null Mice. American Journal of Pathology, 2016, 186, 2404-2416.	3.8	10
418	Caveolinâ€1 as a possible target in the treatment for acne. Experimental Dermatology, 2020, 29, 177-183.	2.9	10
419	Perspectives on Adipose Tissue, Chagas Disease and Implications for the Metabolic Syndrome. Interdisciplinary Perspectives on Infectious Diseases, 2009, 2009, 1-6.	1.4	9
420	Adipose Tissue Dysfunction: A Multistep Process. Research and Perspectives in Endocrine Interactions, 2010, , 67-75.	0.2	9
421	Isolation and Quantitation of Adiponectin Higher Order Complexes. Methods in Enzymology, 2014, 537, 243-259.	1.0	9
422	Alterations in pancreatic β cell function and Trypanosoma cruzi infection: evidence from human and animal studies. Parasitology Research, 2017, 116, 827-838.	1.6	9
423	Induction of Effective Immunity against Trypanosoma cruzi. Infection and Immunity, 2020, 88, .	2.2	9
424	Therapeutic vaccination using minimal HPV16 epitopes in a novel MHC-humanized murine HPV tumor model. Oncolmmunology, 2019, 8, e1524694.	4.6	8
425	Endotrophin: Nominated for best supporting actor in the fibro-inflammatory saga. EBioMedicine, 2021, 69, 103447.	6.1	8
426	Chapter 23 Cross-Linking Reagents as Tools for Identifying Components of the Yeast Mitochondrial Protein Import Machinery. Methods in Cell Biology, 1991, 34, 419-426.	1.1	7
427	Adiponectin/Acrp30, an adipocyte-specific secretory factor: physiological relevance during development. Pediatric Diabetes, 2003, 4, 32-37.	2.9	7
428	Metabolic jet lag when the fat clock is out of sync. Nature Medicine, 2012, 18, 1738-1740.	30.7	7
429	Adiponectin-SOCA Dissociation in Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1065-E1073.	3.6	7
430	In Vivo ZIMIR Imaging of Mouse Pancreatic Islet Cells Shows Oscillatory Insulin Secretion. Frontiers in Endocrinology, 2021, 12, 613964.	3.5	7
431	A Prospective Analysis of Plasma Adiponectin and Risk of Incident Cancer: The Dallas Heart Study. Journal of the National Comprehensive Cancer Network: JNCCN, 2015, 13, 873-878.	4.9	7
432	Leptin Beyond the Lipostat. Circulation Research, 2015, 116, 1293-1295.	4.5	6

#	Article	IF	CITATIONS
433	Fibrosis—streaks and splatters: Some things are not always what they seem to be. Obesity, 2016, 24, 552-553.	3.0	6
434	β1 Syntrophin Supports Autophagy Initiation and Protects against Cerulein-Induced Acute Pancreatitis. American Journal of Pathology, 2019, 189, 813-825.	3.8	6
435	Skin aging: Dermal adipocytes metabolically reprogram dermal fibroblasts. BioEssays, 2022, 44, e2100207.	2.5	6
436	Adult pancreatic islet endocrine cells emerge as fetal hormone-expressing cells. Cell Reports, 2022, 38, 110377.	6.4	6
437	Quantitative phosphoproteomic analyses identify STK11IP as a lysosome-specific substrate of mTORC1 that regulates lysosomal acidification. Nature Communications, 2022, 13, 1760.	12.8	6
438	Impact of the loss of caveolin-1 on lung mass and cholesterol metabolism in mice with and without the lysosomal cholesterol transporter, Niemann–Pick type C1. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 995-1002.	2.4	5
439	Adiponectin moderates antidepressant treatment outcome in the combining medications to enhance depression outcomes randomized clinical trial. Personalized Medicine in Psychiatry, 2018, 9-10, 1-7.	0.1	5
440	Tissue-specific disruption of <i>Kbtbd2</i> uncovers adipocyte-intrinsic and -extrinsic features of the <i>teeny</i> lipodystrophy syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11829-11835.	7.1	5
441	Activating Connexin43 gap junctions primes adipose tissue for therapeutic intervention. Acta Pharmaceutica Sinica B, 2022, 12, 3063-3072.	12.0	5
442	Elevated adiponectin prevents HIV protease inhibitor toxicity and preserves cerebrovascular homeostasis in mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1228-1235.	3.8	4
443	Serum levels of endotrophin are associated with nonalcoholic steatohepatitis. Scandinavian Journal of Gastroenterology, 2021, 56, 437-442.	1.5	4
444	Phenotypical Conversions of Dermal Adipocytes as Pathophysiological Steps in Inflammatory Cutaneous Disorders. International Journal of Molecular Sciences, 2022, 23, 3828.	4.1	4
445	Use and Applications of Subtractive Antibody Screening. Biotechnology and Genetic Engineering Reviews, 2000, 17, 417-432.	6.2	3
446	Overexpression of ST5, an activator of Ras, has no effect on β-cell proliferation in adult mice. Molecular Metabolism, 2018, 11, 212-217.	6.5	3
447	Reduced oxygen consumption by fat cells improves metabolic defects. Nature, 2018, 564, 47-48.	27.8	3
448	PHOSPHO1 puts the breaks on thermogenesis in brown adipocytes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16726-16728.	7.1	3
449	Critical lipids link breastfeeding to healthy adipose tissue in infancy and adulthood. Journal of Clinical Investigation, 2019, 129, 2198-2200.	8.2	3
450	Ceramides are early responders in metabolic syndrome development in rhesus monkeys. Scientific Reports, 2022, 12, .	3.3	3

#	Article	IF	CITATIONS
451	Human Beige Adipocytes: Epiphenomenon or Drivers of Metabolic Improvements?. Trends in Endocrinology and Metabolism, 2016, 27, 244-246.	7.1	2
452	Slim without the gym — the magic of chilling out. Nature Reviews Endocrinology, 2016, 12, 252-254.	9.6	2
453	Epigenetic regulation of cardiometabolic disease by HDAC-BET association. Journal of Molecular and Cellular Cardiology, 2018, 124, 99.	1.9	2
454	Fasting and Glucose-Stimulated Changes in Plasma Glucagon in Pancreatic Cancer. Pancreas, 2019, 48, e1-e3.	1.1	2
455	From friend to foe: Pro-apoptotic action of nuclear ARC in diabetes. Developmental Cell, 2021, 56, 717-718.	7.0	2
456	TLR4-Induced Local Adipose Inflammation Critically Regulates Glucose Homeostasis. Diabetes, 2018, 67, 2032-P.	0.6	2
457	Fasting-Induced Changes in Glucagon Secretion Are Dysregulated in Obesity. Diabetes, 2018, 67, .	0.6	2
458	A new signal that shrinks fat. Nature Metabolism, 2022, 4, 305-307.	11.9	2
459	Adiponectin Modulates Pulmonary Vascular Remodeling By Inhibiting Pulmonary Artery Smooth Muscle Cell Proliferation. , 2010, , .		1
460	Editorial for the directed issue: "Metabolic pathways in cancer― International Journal of Biochemistry and Cell Biology, 2011, 43, 948-949.	2.8	1
461	Fabp4, a new player in the adipo-pancreatic axis. Molecular Metabolism, 2014, 3, 347-348.	6.5	1
462	Pas de Deux. Circulation Research, 2017, 120, 762-764.	4.5	1
463	5.4. Die WÄĦler der Kleinparteien. , 2014, , 155-168.		1
464	The effects of pioglitazone treatment on pancreatic cancer-related insulin resistance Journal of Clinical Oncology, 2017, 35, 329-329.	1.6	1
465	VEGF-A-Expressing Adipose Tissue Shows Rapid Beiging, Enhanced Survival after Transplantation. Diabetes, 2018, 67, 279-LB.	0.6	1
466	A tribute to Roger H. Unger (1924–2020). Journal of Clinical Investigation, 2020, 130, 6191-6193.	8.2	1
467	Response to Kunos et al. and Lotersztajn and Mallat. Journal of Clinical Investigation, 2022, 132, .	8.2	1
468	Transgenic Mice Overexpressing Adiponectin Are Protected Against Insulin Resistance Induced By Intermittent Hypoxia. , 2010, , .		0

#	Article	IF	CITATIONS
469	Continuous Hypoxia Suppresses Adiponectin Secretion By Adipocytes Through Activation Of The Unfolded Protein Response. , 2011, , .		0
470	YIA 02-04 RELATIONSHIP BETWEEN LEPTIN AND INCIDENT HYPERTENSION; OBSERVATIONS FROM THE DALLAS HEART STUDY. Journal of Hypertension, 2016, 34, e203.	0.5	0
471	Thromboxane A2is a key regulator of pathogenesis duringTrypanosoma cruziinfection. Journal of Cell Biology, 2007, 177, i4-i4.	5.2	0
472	Rgs16 is an early marker for islet formation and beta cell expansion in diabetics. FASEB Journal, 2010, 24, 587.1.	0.5	0
473	Plasma adiponectin to predict incident cancer in a large multiethnic population-based cohort study Journal of Clinical Oncology, 2013, 31, 1560-1560.	1.6	0
474	Association of adiponectin in patatin-like phospholipase domain-containing 3 (PNPLA3) associated hepatic steatosis Journal of Clinical Oncology, 2014, 32, 184-184.	1.6	0
475	The effects of pioglitazone treatment on pancreatic cancer-related insulin resistance Journal of Clinical Oncology, 2017, 35, e15752-e15752.	1.6	0
476	Abstract SY28-01: Stromal contributions of adipocytes to cancer. , 2017, , .		0
477	Targeting the Amyloid Precursor Protein (APP) to Mitochondria of White Adipose Tissues Triggers Mitochondrial Dysfunction and Obesity. Diabetes, 2018, 67, .	0.6	0
478	Thiazolidinediones' Insulin-Sensitizing Properties Depend on Adiponectin-Mediated Reductions in Certain Ceramide Species. Diabetes, 2018, 67, 277-LB.	0.6	0
479	Comparison of BMIPP-SPECT/CT to 18FDG-PET/CT for Imaging Brown or Browning Fat in a Preclinical Model. International Journal of Molecular Sciences, 2022, 23, 4880.	4.1	Ο