Anthony Harriman

List of Publications by Citations

Source: https://exaly.com/author-pdf/7505994/anthony-harriman-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 17,361 126 240 h-index g-index citations papers 18,113 6.79 7.2 247 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
240	The chemistry of fluorescent bodipy dyes: versatility unsurpassed. <i>Angewandte Chemie -</i> International Edition, 2008 , 47, 1184-201	16.4	2454
239	Metal phthalocyanines and porphyrins as photosensitizers for reduction of water to hydrogen. <i>Coordination Chemistry Reviews</i> , 1982 , 44, 83-126	23.2	872
238	The chemistry of Bodipy: A new El Dorado for fluorescence tools. <i>New Journal of Chemistry</i> , 2007 , 31, 496	3.6	783
237	Metal oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. Journal of the Chemical Society Faraday Transactions I, 1988, 84, 2795		473
236	Die vielseitige Chemie von Bodipy-Fluoreszenzfarbstoffen. <i>Angewandte Chemie</i> , 2008 , 120, 1202-1219	3.6	469
235	Further comments on the redox potentials of tryptophan and tyrosine. <i>The Journal of Physical Chemistry</i> , 1987 , 91, 6102-6104		369
234	Artificial light-harvesting antennae: electronic energy transfer by way of molecular funnels. <i>Chemical Communications</i> , 2011 , 47, 611-31	5.8	338
233	Photoinduced energy transfer in associated, but noncovalently-linked photosynthetic model systems <i>Journal of the American Chemical Society</i> , 1995 , 117, 704-714	16.4	300
232	Making photoactive molecular-scale wires. <i>Chemical Communications</i> , 1996 , 1707	5.8	294
231	A strategy for constructing photosynthetic models: porphyrin-containing modules assembled around transition metals. <i>Chemical Society Reviews</i> , 1996 , 25, 41	58.5	288
230	Artificial photosynthesis. <i>Materials Today</i> , 2008 , 11, 26-34	21.8	255
229	Dynamics of electron transfer between intercalated polycyclic molecules: effect of interspersed bases. <i>Journal of the American Chemical Society</i> , 1992 , 114, 3656-3660	16.4	228
228	Multifunctional transition metal complexes. <i>Coordination Chemistry Reviews</i> , 1998 , 178-180, 1251-1298	23.2	218
227	Building photoactive molecular-scale wires. <i>Coordination Chemistry Reviews</i> , 1998 , 171, 331-339	23.2	195
226	Synthesis and photophysical properties of borondipyrromethene dyes bearing aryl substituents at the boron center. <i>Journal of the American Chemical Society</i> , 2006 , 128, 10231-9	16.4	180
225	Luminescence of porphyrins and metalloporphyrins. Part 1. Zinc(II), nickel(II) and manganese(II) porphyrins. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1980 , 76, 1978		180
224	Intramolecular Triplet Energy Transfer in PyreneMetal Polypyridine Dyads: A Strategy for Extending the Triplet Lifetime of the Metal Complex. <i>Chemistry - A European Journal</i> , 1999 , 5, 3366-338	1 ^{4.8}	177

(2005-1994)

223	Energy- and Electron-Transfer Processes Involving Palladium Porphyrins Bound to DNA. <i>Journal of the American Chemical Society</i> , 1994 , 116, 10383-10393	16.4	173
222	Long-range photoinduced electron transfer in an associated but non-covalently linked photosynthetic model system. <i>Journal of the American Chemical Society</i> , 1993 , 115, 10418-10419	16.4	172
221	Selective triplet-state formation during charge recombination in a fullerene/Bodipy molecular dyad (Bodipy=borondipyrromethene). <i>Chemistry - A European Journal</i> , 2009 , 15, 7382-93	4.8	166
220	Electronic Energy Transfer Across Ethynyl-Bridged Rull/OsII Terpyridyl Complexes. <i>Angewandte Chemie International Edition in English</i> , 1995 , 34, 1100-1102		166
219	Luminescence of porphyrins and metalloporphyrins. Part 3. Heavy-atom effects. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1981 , 77, 1281-1291		165
218	Intramolecular energy transfer in pyrene-bodipy molecular dyads and triads. <i>Chemistry - A European Journal</i> , 2005 , 11, 7366-78	4.8	162
217	An artificial light-harvesting array constructed from multiple Bodipy dyes. <i>Journal of the American Chemical Society</i> , 2013 , 135, 11330-44	16.4	158
216	Charge on the move: how electron-transfer dynamics depend on molecular conformation. <i>Chemical Society Reviews</i> , 2006 , 35, 169-79	58.5	154
215	Charge transfer across oblique bisporphyrins: two-center photoactive molecules. <i>Journal of the American Chemical Society</i> , 1991 , 113, 8657-8663	16.4	142
214	Artificial light-harvesting arrays: electronic energy migration and trapping on a sphere and between spheres. <i>Journal of the American Chemical Society</i> , 2012 , 134, 988-98	16.4	140
213	Charge shift and triplet state formation in the 9-mesityl-10-methylacridinium cation. <i>Journal of the American Chemical Society</i> , 2005 , 127, 16054-64	16.4	138
212	Photoinduced Electron- and Energy-Transfer Processes Occurring within Porphyrin-Metal-Bisterpyridyl Conjugates. <i>Journal of the American Chemical Society</i> , 1994 , 116, 5679-569	H ^{6.4}	137
211	Rapid energy transfer in cascade-type bodipy dyes. <i>Journal of the American Chemical Society</i> , 2006 , 128, 10868-75	16.4	136
2 10	Electron Delocalization in Ethynyl-Bridged Binuclear Ruthenium(II) Polypyridine Complexes. <i>Angewandte Chemie International Edition in English</i> , 1994 , 33, 1884-1885		128
209	Length dependence for intramolecular energy transfer in three- and four-color donor-spacer-acceptor arrays. <i>Journal of the American Chemical Society</i> , 2009 , 131, 13375-86	16.4	126
208	Molecular recognition via base pairing: photoinduced electron transfer in hydrogen-bonded zinc porphyrin-benzoquinone conjugates. <i>Journal of the American Chemical Society</i> , 1992 , 114, 388-390	16.4	123
207	Photochemistry of intercalated methylene blue: photoinduced hydrogen atom abstraction from guanine and adenine. <i>Journal of the American Chemical Society</i> , 1993 , 115, 1816-1822	16.4	120
206	Long-lived charge-transfer states in compact donor-acceptor dyads. <i>ChemPhysChem</i> , 2005 , 6, 2251-60	3.2	117

205	Electronic energy migration and trapping in quinone-substituted, phenyl-linked dimeric and trimeric porphyrins. <i>Journal of the American Chemical Society</i> , 1993 , 115, 4618-4628	16.4	116
204	Solid-state gas sensors developed from functional difluoroboradiazaindacene dyes. <i>Chemistry - A European Journal</i> , 2009 , 15, 1359-69	4.8	111
203	Fine-Tuning the Electronic Properties of Binuclear Bis(terpyridyl)ruthenium(II) Complexes. <i>Angewandte Chemie - International Edition</i> , 1998 , 37, 1717-1720	16.4	111
202	Electron Delocalization in Polyene-Bridged Binuclear Complexes. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 7798-7804		106
201	Electron Tunneling in DNA. Angewandte Chemie - International Edition, 1999, 38, 945-949	16.4	100
200	Rapid intersystem crossing in closely-spaced but orthogonal molecular dyads. <i>ChemPhysChem</i> , 2007 , 8, 1207-14	3.2	98
199	Intramolecular Electron Transfer Reactions Observed for Dawson-Type Polyoxometalates Covalently Linked to Porphyrin Residues. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 5834-5842	3.8	96
198	A Molecular Rotor Based on an Unhindered Boron Dipyrromethene (Bodipy) Dye. <i>Chemistry of Materials</i> , 2008 , 20, 4024-4032	9.6	95
197	An Unusually Shallow Distance-Dependence for Triplet-Energy Transfer. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 4287-4290	16.4	94
196	A ruthenium(II) tris(2,2?-bipyridine) derivative possessing a triplet lifetime of 42 µs. <i>Chemical Communications</i> , 1999 , 735-736	5.8	93
195	Photoactive [2]Rotaxanes: Structure and Photophysical Properties of Anthracene- and Ferrocene-Stoppered [2]Rotaxanes. <i>Journal of the American Chemical Society</i> , 1995 , 117, 5275-5291	16.4	93
194	Luminescence of porphyrins and metalloporphyrins. Part 11. Energy transfer in zinc the tal-free porphyrin dimers. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1986 , 82, 219-233		86
193	Temperature-induced switching of the mechanism for intramolecular energy transfer in a 2,2@QQQ QTerpyridine-based Ru(II)-Os(II) trinuclear array. <i>Journal of the American Chemical Society</i> , 2005 , 127, 2553-64	16.4	82
192	The redox potential of the azide/azidyl couple. <i>The Journal of Physical Chemistry</i> , 1987 , 91, 2120-2122		81
191	Energy Transfer in Molecular Dyads Comprising Metalloporphyrin and Ruthenium(II) Tris(2,2Ebipyridyl) Terminals. Competition between Internal Conversion and Energy Transfer in the Upper Excited Singlet State of the Porphyrin. <i>Journal of the American Chemical Society</i> , 1999 , 121, 2516	16.4 -2525	8o
190	A porphyrin-polyoxometallate bio-inspired mimic for artificial photosynthesis. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 8767-73	3.6	79
189	Towards the Development of Molecular Wires: Electron Localization, Exchange, and Transfer in Alkyne-Bridged Multinuclear Complexes. <i>Angewandte Chemie International Edition in English</i> , 1996 , 34, 2705-2708		79
188	Predicting the Air Stability of Phosphines. <i>Organometallics</i> , 2011 , 30, 5338-5343	3.8	77

187	Synthesis and photophysical properties of ruthenium(II)bis(2,2?:6?,2?-terpyridine) complexes constructed from a diethynylated-thiophene residue. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 2229-3	2 235	77
186	Intramolecular Triplet Energy Transfer in Metal Polypyridine Complexes Bearing Ethynylated Aromatic Groups. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 1512-1523	2.8	77
185	Controlling Electronic Communication in Ethynylated-Polypyridine Metal Complexes. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 185-189	16.4	75
184	Photophysical properties of pyrene-(2,2?-bipyridine) dyads. <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 4203-4211	3.6	75
183	Photochemistry of intercalated quaternary diazaaromatic salts. <i>Journal of the American Chemical Society</i> , 1991 , 113, 8153-8159	16.4	75
182	Reversible photo-oxidation of zinc tetraphenylporphine by benzo-1,4-quinone. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1979 , 75, 1515		75
181	The photophysical properties of a julolidene-based molecular rotor. <i>Physical Chemistry Chemical Physics</i> , 2005 , 7, 3035-40	3.6	74
180	Redox reactions with colloidal metal oxides. Comparison of radiation-generated and chemically generated RuO2DH2O. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1987 , 83, 3001		72
179	Boron dipyrrin dyes exhibiting "push-pull-pull" electronic signatures. <i>Chemistry - A European Journal</i> , 2009 , 15, 10369-74	4.8	70
178	Electron Delocalization in Ruthenium(II) and Osmium(II) 2,2EBipyridyl Complexes Formed from Ethynyl-Bridged Ditopic Ligands. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 17472-17484		70
177	Energy flow in a purpose-built cascade molecule bearing three distinct chromophores attached to the terminal acceptor. <i>Chemistry - A European Journal</i> , 2008 , 14, 11461-73	4.8	68
176	Self-assembly of charged Bodipy dyes to form Cassettes that display intracomplex electronic energy transfer and accrete into liquid crystals. <i>Journal of the American Chemical Society</i> , 2012 , 134, 6100	<u>16</u> 4	67
175	A light-harvesting array of synthetic porphyrins. <i>Chemical Physics Letters</i> , 1987 , 136, 427-430	2.5	66
174	Highly selective detection of nerve-agent simulants with BODIPY dyes. <i>Chemistry - A European Journal</i> , 2014 , 20, 6339-47	4.8	65
173	Photophysics of halogenated porphyrins. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1992 , 88, 763		63
172	Pathways for photoinduced electron transfer within a mixed-metal bisporphyrin. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 5940-5946		62
171	Electron transfer in self-assembled orthogonal structures. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 7994-8002	2.8	61
170	Intramolecular triplet energy transfer in alkyne-bridged Ru®s multinuclear complexes: switching between dipoledipole and electron-exchange mechanisms. <i>Journal of the Chemical Society, Faraday Transactions,</i> 1996 , 92, 2223-2238		59

169	Photon antennae assembled by nucleic acid base pairing. <i>The Journal of Physical Chemistry</i> , 1991 , 95, 1530-1532		59
168	Photochemical dehydrogenation of ethanol in dilute aqueous solution. <i>Nature</i> , 1984 , 307, 534-535	50.4	59
167	Artificial light-harvesting arrays for solar energy conversion. Chemical Communications, 2015, 51, 11745	5- <u>5</u> 66	58
166	The triplet excited state of ruthenium(II) bis(2,2?:6?,2?-terpyridine): Comparison between experiment and theory. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 1157-1164	3.6	58
165	Electronic energy transfer to the S2 level of the acceptor in functionalised boron dipyrromethene dyes. <i>Chemistry - A European Journal</i> , 2009 , 15, 4553-64	4.8	57
164	The photophysical properties of a pyrenethiopheneterpyridine conjugate and of its zinc(II) and ruthenium(II) complexes. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 51-57	3.6	57
163	One- and two-electron reduction of metalloporphyrins. Radiation chemical, photochemical, and electrochemical studies. Kinetics of the decay of .piradical anions. <i>The Journal of Physical Chemistry</i> , 1986 , 90, 2462-2468		57
162	Electron delocalization in a ruthenium(II) Bis(2,2@QQterpyridyl) complex. <i>Inorganic Chemistry</i> , 2004 , 43, 4227-33	5.1	56
161	Photophysics of entwined porphyrin conjugates: competitive exciton annihilation, energy-transfer, electron-transfer, and superexchange processes. <i>Journal of the American Chemical Society</i> , 1992 , 114, 4632-4639	16.4	56
160	Ultrafast intersystem crossing in 9,10-anthraquinones and intramolecular charge separation in an anthraquinone-based dyad. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 13145-50	2.8	55
159	Orientational control of electronic coupling in mixed-valence, binuclear ruthenium(II)-bis(2,2@QQQ Qterpyridine) complexes. <i>Journal of the American Chemical Society</i> , 2004 , 126, 13630-1	16.4	54
158	Extending the luminescence lifetime of ruthenium(II) poly(pyridine) complexes in solution at ambient temperature. <i>Dalton Transactions</i> , 2003 , 2061-2068	4.3	54
157	Photo-oxidation of water to oxygen sensitised by tris(2,2?-bipyridyl)ruthenium(II). <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1981 , 77, 2373-2383		54
156	Unusually slow charge recombination in molecular dyads. <i>Angewandte Chemie - International Edition</i> , 2004 , 43, 4985-7	16.4	53
155	Photochemistry of merocyanine 540: the mechanism of chemotherapeutic activity with cyanine dyes. <i>Photochemistry and Photobiology</i> , 1991 , 53, 1-11	3.6	53
154	Conformational Control of Intramolecular Electron Transfer in Calix[4]diquinones and Their Cationic Complexes. <i>Journal of the American Chemical Society</i> , 1999 , 121, 14-27	16.4	52
153	Intramolecular Electron and Energy Transfer within a Bisporphyrin in a Low-Temperature Glass. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 4982-4989		52
152	Intramolecular excimer formation and delayed fluorescence in sterically constrained pyrene dimers. <i>Chemistry - A European Journal</i> , 2007 , 13, 4665-74	4.8	51

(2004-2005)

151	Illumination of the 9-mesityl-10-methylacridinium ion does not give a long-lived photoredox state. <i>Chemical Communications</i> , 2005 , 2701-3	5.8	51	
150	Cofacial boron dipyrromethene (Bodipy) dimers: synthesis, charge delocalization, and exciton coupling. <i>Journal of Organic Chemistry</i> , 2010 , 75, 2018-27	4.2	50	
149	Electronic energy transfer in molecular dyads built around boron-ethyne-substituted subphthalocyanines. <i>Chemistry - A European Journal</i> , 2009 , 15, 4980-4	4.8	48	
148	Energy transfer across a hydrogen-bonded, cytosine-derived, zincfree-base porphyrin conjugate. <i>Journal of the Chemical Society Chemical Communications</i> , 1991 , 345-348		48	
147	Prospects for conversion of solar energy into chemical fuels: the concept of a solar fuels industry. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences,</i> 2013 , 371, 2011041	3	46	
146	A general purpose reporter for cations: absorption, fluorescence and electrochemical sensing of zinc(II). <i>Dalton Transactions</i> , 2003 , 4762	4.3	45	
145	The effect of torsion angle on the rate of intramolecular triplet energy transfer. <i>Physical Chemistry Chemical Physics</i> , 2005 , 7, 3677-9	3.6	44	
144	Internal rotation in auramine O. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1994 , 90, 697		43	
143	Through-space electronic energy transfer across proximal molecular dyads. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 6611-5	16.4	42	
142	Oxidation of metal tetraphenylporphyrins. <i>Inorganica Chimica Acta</i> , 1982 , 62, 103-107	2.7	42	
141	A donor-acceptor molecular dyad showing multiple electronic energy-transfer processes in crystalline and amorphous states. <i>Journal of the American Chemical Society</i> , 2008 , 130, 7174-5	16.4	40	
140	The Photophysical Properties of Hybrid Metal Complexes Containing both 2,2?-Bipyridine and 2,2?:6?,2??-Terpyridine Units. <i>European Journal of Inorganic Chemistry</i> , 2003 , 2003, 955-959	2.3	40	
139	Remarkable Differences in Catalyst Activity and Selectivity for the Production of Methyl Propanoate versus COEthylene Copolymer by a Series of Palladium Complexes of Related C4-Bridged Diphosphines. <i>Organometallics</i> , 2000, 19, 4957-4967	3.8	40	
138	Photoinduced charge separation in a porphyrin-tetraviologen supramolecular array. <i>Journal of the American Chemical Society</i> , 1990 , 112, 126-133	16.4	39	
137	Origin of the Red-Shifted Optical Spectra Recorded for Aza-BODIPY Dyes. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 2537-46	2.8	38	
136	Intramolecular excimer formation for covalently linked boron dipyrromethene dyes. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 12111-9	2.8	37	
135	Exploring the limits of FEster theory for energy transfer at a separation of 20 A. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 2772-6	16.4	35	
134	A Closely-Coupled Pyrene Dimer Having Unusually Intense Fluorescence. <i>European Journal of Organic Chemistry</i> , 2004 , 2004, 2272-2276	3.2	35	

133	Intramolecular charge transfer in rigidly linked naphthalene l irialkylamine compounds. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1995 , 91, 4047-4057		35
132	Quasi-one-dimensional electronic systems formed from boron dipyrromethene (BODIPY) dyes. <i>Chemistry - A European Journal</i> , 2010 , 16, 11942-53	4.8	34
131	Molecular Rotors Based on the Boron Dipyrromethene Fluorophore. <i>European Journal of Organic Chemistry</i> , 2010 , 2010, 523-530	3.2	33
130	Fluorescent molecular rotors based on the BODIPY motif: effect of remote substituents. <i>Photochemical and Photobiological Sciences</i> , 2014 , 13, 1397-401	4.2	32
129	Conformational effects on the dynamics of internal conversion in boron dipyrromethene dyes in solution. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 6634-7	16.4	32
128	Energy transfer by way of an exciplex intermediate in flexible boron dipyrromethene-based allosteric architectures. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 10515-22	2.8	32
127	Comparison of the photophysical properties of osmium(II) bis(2,2@Q@terpyridine) and the corresponding ethynylated derivative. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 2302-9	2.8	32
126	A strategy for the synthesis of metal bis(2,2@QQterpyridine)-terminated molecular dyads having controlled torsion angles at the central biphenyl linker. <i>Journal of Organic Chemistry</i> , 2006 , 71, 3481-93	4.2	32
125	Nanomechanical properties of molecular-scale bridges as visualised by intramolecular electronic energy transfer. <i>Chemical Science</i> , 2013 , 4, 444-453	9.4	31
124	A spectroscopic study of the reduction of geometrically restrained viologens. <i>Chemistry - A European Journal</i> , 2007 , 13, 7838-51	4.8	31
123	Photophysical properties of closely-coupled, binuclear ruthenium(II) bis(2,2@Q@terpyridine) complexes. <i>Dalton Transactions</i> , 2004 , 1227-32	4.3	31
122	Intercompartmental Electron Exchange in Geometrically-Constrained Ru®s Triads Built around Diethynylated Aryl Hydrocarbons. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 7906-7915	2.8	31
121	Polyelectrolyte-stabilized metal oxide hydrosols as catalysts for the photooxidation of water by zinc porphyrins. <i>The Journal of Physical Chemistry</i> , 1988 , 92, 4499-4504		31
120	Electron exchange in conformationally restricted donor-spacer-acceptor dyads: angle dependence and involvement of upper-lying excited States. <i>Chemistry - A European Journal</i> , 2008 , 14, 1710-7	4.8	30
119	Exciplex-like emission from a closely-spaced, orthogonally-sited anthracenyl-boron dipyrromethene (Bodipy) molecular dyad. <i>Photochemical and Photobiological Sciences</i> , 2010 , 9, 1009-17	4.2	29
118	Energy- and Charge-Transfer Processes in a Perylene B ODIPY P yridine Tripartite Array. <i>European Journal of Organic Chemistry</i> , 2008 , 2008, 2774-2782	3.2	29
117	A pulse-radiolytic and photochemical study of the oxidation of water by zinc porphyrin Fradical cations. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1984 , 80, 1451-1464		29
116	Resolving the contribution due to FEster-type intramolecular electronic energy transfer in closely coupled molecular dyads. <i>Chemical Science</i> , 2012 , 3, 1041-1048	9.4	27

115	Charge-recombination fluorescence from push-pull electronic systems constructed around amino-substituted styryl-BODIPY dyes. <i>Chemistry - A European Journal</i> , 2013 , 19, 13528-37	4.8	26	
114	Comment: Electron-transfer reactions in the 9-mesityl-10-methylacridinium ion: impurities, triplet states and infinitely long-lived charge-shift states?. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 5156	-8 ^{3.6}	26	
113	Direct observation of the fourth MLCT triplet state in ruthenium(II) tris(2,2@bipyridine). <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 944-8	3.6	25	
112	Long-lived Charge-Transfer States in 9-Aryl-Acridinium Ions; A Critical Reinvestigation. <i>International Journal of Photoenergy</i> , 2005 , 7, 103-108	2.1	25	
111	Bidirectional electron transfer in molecular tetrads. <i>Journal of the American Chemical Society</i> , 2010 , 132, 26-7	16.4	24	
110	Radiation chemistry of cyanine dyes: oxidation and reduction of merocyanine 540. <i>The Journal of Physical Chemistry</i> , 1991 , 95, 2415-2420		24	
109	Picosecond dynamics of intramolecular electron and energy transfer in porphyrin dimer model compounds. <i>Chemical Physics</i> , 1989 , 131, 473-480	2.3	24	
108	Zinc porphyrin Fradical cations in aqueous solution. Formation, spectra and decay kinetics. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1985 , 81, 123-138		24	
107	One-Pot Synthesis of a Mono-O,B,N-strapped BODIPY Derivative Displaying Bright Fluorescence in the Solid State. <i>Organic Letters</i> , 2017 , 19, 1626-1629	6.2	23	
106	Reactions of magnesium porphyrin radical cations in water. Disproportionation, oxygen production, and comparison with other metalloporphyrins. <i>The Journal of Physical Chemistry</i> , 1986 , 90, 3444-3448		23	
105	Can a Butadiene-Based Architecture Compete with its Biaryl Counterpart in Asymmetric Catalysis? Enantiopure Me-CATPHOS, a Remarkably Efficient Ligand for Asymmetric Hydrogenation. <i>Organometallics</i> , 2009 , 28, 888-895	3.8	22	
104	Photophysical properties of binuclear ruthenium(ii) bis(2,2@Q@terpyridine) complexes built around a central 2,2@bipyrimidine receptor. <i>Dalton Transactions</i> , 2005 , 2925-32	4.3	22	
103	Iridium oxide hydrosols as catalysts for the decay of zinc porphyrin radical cations in water. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1988 , 84, 2821		22	
102	A hybrid bis(amino-styryl) substituted Bodipy dye and its conjugate diacid: synthesis, structure, spectroscopy and quantum chemical calculations. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 10187-	-9 8 .6	21	
101	Fluorescent molecular rotors under pressure: synergistic effects of an inert polymer. <i>RSC Advances</i> , 2012 , 2, 9851	3.7	21	
100	Using a photoacid generator to switch the direction of electronic energy transfer in a molecular triad. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 7833-6	16.4	21	
99	Competing through-space and through-bond, intramolecular triplet-energy transfer in a supposedly rigid ruthenium(II) tris(2,2@bipyridine)fullerene molecular dyad. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 4112-8	3.6	21	
98	Photochemical Bleaching of an Elaborate Artificial Light-Harvesting Antenna. <i>ChemPhysChem</i> , 2015 , 16, 1867-72	3.2	20	

97	Intramolecular charge-transfer interactions in a julolidine B odipy molecular assembly as revealed via 13C NMR chemical shifts. <i>Journal of Molecular Structure</i> , 2011 , 985, 346-354	3.4	20
96	A near-IR emitting bodipy-based dye fitted with ancillary light harvesting units. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 5199-201	3.6	20
95	(Photo)isomerization dynamics of merocyanine dyes in solution. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 1992 , 65, 79-93	4.7	20
94	Photoisomerization of a sterically constrained merocyanine dye. <i>Journal of the Chemical Society,</i> Faraday Transactions, 1998 , 94, 1841-1847		19
93	Boron Dipyrromethene Dyes Bearing Ancillary 2,2?:6?,2?-Terpyridine Coordination Sites. <i>European Journal of Organic Chemistry</i> , 2007 , 2007, 3191-3198	3.2	19
92	Dynamics of Charge Transfer and Recombination in a Covalently-Linked, Face-to-Face Electron Donor-Acceptor Complex. <i>Journal of the American Chemical Society</i> , 1994 , 116, 11531-11537	16.4	19
91	Engineering of an electronically decoupled difluoroindacene-pyrene dyad possessing high affinity for DNA. <i>New Journal of Chemistry</i> , 2005 , 29, 1241	3.6	18
90	A Strategy for Controlling the Central Torsion Angle in Biphenyl-Based Molecular-Scale Bridges. <i>European Journal of Organic Chemistry</i> , 2005 , 2005, 4680-4686	3.2	18
89	Formation and decay of zinc tetrakis (N-methyl-3-pyridyl)porphine Fadical cation in water. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1986 , 82, 235-249		18
88	Stepwise photoconversion of an artificial light-harvesting array built from extended BODIPY units. <i>Photochemical and Photobiological Sciences</i> , 2015 , 14, 1100-9	4.2	17
87	How the central torsion angle affects the rates of nonradiative decay in some geometrically restricted p-quaterphenyls. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 2641-9	2.8	17
86	The effect of solvent polarity on the photophysical properties of 4-cyano-(4@methylthio)diphenylacetylene: a prototypic donor-acceptor system. <i>Physical Chemistry Chemical Physics</i> , 2005 , 7, 3041-7	3.6	17
85	The mechanism of long-range electron exchange in molecular-scale photonic wires. <i>Faraday Discussions</i> , 2006 , 131, 377-91; discussion 393-402	3.6	17
84	Electrostatic Control of Intramolecular Electron Transfer in Calix[4]diquinones Bearing an Appended Chromophore. <i>Angewandte Chemie - International Edition</i> , 1998 , 37, 3249-3252	16.4	16
83	Effect of resonance polarity on the rate of isomerization of merocyanine dyes. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1998 , 94, 519-525		16
82	The effect of separation distance on the fluorescence quenching for zinc porphyrin/viologen systems. <i>Inorganica Chimica Acta</i> , 1984 , 88, 213-216	2.7	16
81	Membrane polarographic detectors for determination of hydrogen and oxygen produced by the photodissociation of water. <i>Analytical Chemistry</i> , 1981 , 53, 1254-1257	7.8	16
80	Ultrafast Electronic Energy Transfer Beyond the Weak Coupling Limit in a Proximal but Orthogonal Molecular Dyad. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 12665-71	2.8	15

(2017-2017)

79	Structural Dynamics and Barrier Crossing Observed for a Fluorescent O-Doped Polycyclic Aromatic Hydrocarbon. <i>ChemPhotoChem</i> , 2017 , 1, 198-205	3.3	15	
78	Thermoresponsive fluorescent polymers based on a quaterthiophene-containing boron dipyrromethene (Bodipy) dyad dispersed in silicone rubber. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2601		15	
77	Exploring the effects of solvent polarity on the rate of Fister-type electronic energy transfer in a closely-spaced molecular dyad. <i>Photochemical and Photobiological Sciences</i> , 2010 , 9, 960-7	4.2	15	
76	On the conjugation length for oligo(ethynylnaphthalene)-based molecular rods. <i>Chemistry - A European Journal</i> , 2007 , 13, 10194-203	4.8	15	
75	The dehydrogenation of ethanol in dilute aqueous solution photosensitised by benzophenones. Journal of the Chemical Society Faraday Transactions I, 1988, 84, 2109		15	
74	Photoredox processes in metalloporphyrin@rown ether systems. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1984 , 80, 867-876		15	
73	Electronic Communication in Closely Connected BODIPY-Based Bichromophores. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 8104-8113	2.8	15	
72	The First Rull Bipyridyl-Capped Cyclodextrin: Evidence of Electron-Transfer Through the Cavity. <i>European Journal of Inorganic Chemistry</i> , 2000 , 2000, 1147-1150	2.3	15	
71	Opening a spiropyran ring by way of an exciplex intermediate. <i>Journal of Organic Chemistry</i> , 2007 , 72, 888-97	4.2	14	
70	Synthesis of a multitopic pyrenethiopheneththracene-2,2?:6?,2?-terpyridine array. <i>Tetrahedron Letters</i> , 2004 , 45, 2503-2506	2	14	
69	Complexation between ferrocene-based 2,2?-bipyridine ligands and copper(I) cations. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 1593-1598	3.6	14	
68	Effects of Temperature and Concentration on the Rate of Photobleaching of Erythrosine in Water. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 8569-8576	2.8	13	
67	Exploring the Limits of FEster Theory for Energy Transfer at a Separation of 20 []Angewandte Chemie, 2009 , 121, 2810-2814	3.6	13	
66	Accessing molecular memory via a disulfide switch. <i>New Journal of Chemistry</i> , 2009 , 33, 417-427	3.6	13	
65	Intramolecular Delayed Fluorescence as a Tool for Imaging Science: Synthesis and Photophysical Properties of a First-Generation Emitter. <i>Chemistry of Materials</i> , 2007 , 19, 1931-1938	9.6	13	
64	Light-induced electron transfer in porphyrin-calixarene conjugates. <i>Photochemical and Photobiological Sciences</i> , 2005 , 4, 47-53	4.2	13	
63	Photophysical properties of ruthenium(II) tris(2,2@bipyridine) complexes bearing conjugated thiophene appendages. <i>Inorganic Chemistry</i> , 2006 , 45, 9729-41	5.1	13	
62	Dramatic Effect of Solvent on the Rate of Photobleaching of Organic Pyrrole-BF2 (BOPHY) Dyes. <i>ChemPhotoChem</i> , 2017 , 1, 317-325	3.3	12	

61	Solvent-Driven Conformational Exchange for Amide-Linked Bichromophoric BODIPY Derivatives. <i>Chemistry - A European Journal</i> , 2016 , 22, 14356-66	4.8	12
60	Photo-Oxidation of Water under Ambient Conditions The Search for Effective Oxygen-Evolving Catalysts. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 573-580	2.3	12
59	Through-Space Electronic Energy Transfer Across Proximal Molecular Dyads. <i>Angewandte Chemie</i> , 2013 , 125, 6743-6747	3.6	12
58	Intramolecular charge transfer in 4-cyano-(4?-methylthio)diphenyl-acetylene. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 1344-1351	3.6	12
57	An Unusually Shallow Distance-Dependence for Triplet-Energy Transfer. <i>Angewandte Chemie</i> , 2000 , 112, 4457-4460	3.6	12
56	Photo-oxidation of water in non-sacrificial systems. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1985 , 81, 575		12
55	Thermally-Activated, Delayed Fluorescence in O,B,O- and N,B,O-Strapped Boron Dipyrromethene Derivatives. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 2096-2107	2.8	11
54	Photocatalysis and self-catalyzed photobleaching with covalently-linked chromophore-quencher conjugates built around BOPHY. <i>Photochemical and Photobiological Sciences</i> , 2018 , 17, 750-762	4.2	11
53	Competition between energy transfer and interligand electron transfer in porphyrin-osmium(II) bis(2,2@Q:Q:terpyridine) dyads. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 8918-24	2.8	11
52	Electronic Conduction in Photoactive Metallo-wires 2006 , 26-89		11
52 51	Electronic Conduction in Photoactive Metallo-wires 2006, 26-89 An apparent angle dependence for the nonradiative deactivation of excited triplet states of sterically constrained, binuclear ruthenium(II) bis(2,2@QQerpyridine) complexes. <i>Journal of Physical Chemistry A</i> , 2006, 110, 9880-6	2.8	11
	An apparent angle dependence for the nonradiative deactivation of excited triplet states of sterically constrained, binuclear ruthenium(II) bis(2,266Q2Qeterpyridine) complexes. <i>Journal of</i>		
51	An apparent angle dependence for the nonradiative deactivation of excited triplet states of sterically constrained, binuclear ruthenium(II) bis(2,2@Q@terpyridine) complexes. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 9880-6		11
51	An apparent angle dependence for the nonradiative deactivation of excited triplet states of sterically constrained, binuclear ruthenium(II) bis(2,2@Q@terpyridine) complexes. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 9880-6 Conformational control of electron delocalisation in geometrically-constrained, binuclear ruthenium(II) bis(2,2?:6?,2?-terpyridine) complexes. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 875-877. Controlling electron delocalisation in constrained N,N?-dimethyl-4,4?-bipyridinium dications. <i>Tetrahedron Letters</i> , 2005 , 46, 7291-7293	₇ 3.6	11
51 50 49	An apparent angle dependence for the nonradiative deactivation of excited triplet states of sterically constrained, binuclear ruthenium(II) bis(2,2@Q@terpyridine) complexes. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 9880-6 Conformational control of electron delocalisation in geometrically-constrained, binuclear ruthenium(II) bis(2,2?:6?,2?-terpyridine) complexes. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 875-877. Controlling electron delocalisation in constrained N,N?-dimethyl-4,4?-bipyridinium dications. <i>Tetrahedron Letters</i> , 2005 , 46, 7291-7293 Controlling Electronic Communication in Ethynylated-Polypyridine Metal Complexes. <i>Angewandte</i>	₇ 3.6	11 11 11
51 50 49 48	An apparent angle dependence for the nonradiative deactivation of excited triplet states of sterically constrained, binuclear ruthenium(II) bis(2,2@QQterpyridine) complexes. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 9880-6 Conformational control of electron delocalisation in geometrically-constrained, binuclear ruthenium(II) bis(2,2?:6?,2?-terpyridine) complexes. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 875-877. Controlling electron delocalisation in constrained N,N?-dimethyl-4,4?-bipyridinium dications. <i>Tetrahedron Letters</i> , 2005 , 46, 7291-7293 Controlling Electronic Communication in Ethynylated-Polypyridine Metal Complexes. <i>Angewandte Chemie</i> , 2000 , 112, 191-195 Cyanine dyes as ratiometric fluorescence standards for the far-red spectral region. <i>Photochemical and Photobiological Sciences</i> , 2018 , 17, 99-106	2 3.6	11 11 11
51 50 49 48 47	An apparent angle dependence for the nonradiative deactivation of excited triplet states of sterically constrained, binuclear ruthenium(II) bis(2,2@Q@terpyridine) complexes. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 9880-6 Conformational control of electron delocalisation in geometrically-constrained, binuclear ruthenium(II) bis(2,2?:6?,2?-terpyridine) complexes. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 875-877. Controlling electron delocalisation in constrained N,N?-dimethyl-4,4?-bipyridinium dications. <i>Tetrahedron Letters</i> , 2005 , 46, 7291-7293 Controlling Electronic Communication in Ethynylated-Polypyridine Metal Complexes. <i>Angewandte Chemie</i> , 2000 , 112, 191-195 Cyanine dyes as ratiometric fluorescence standards for the far-red spectral region. <i>Photochemical and Photobiological Sciences</i> , 2018 , 17, 99-106 Außrgewßnlich langsame Ladungsrekombination in molekularen Dyaden. <i>Angewandte Chemie</i> ,	7 ^{3.6} 2 3.6 4.2	11 11 11 11 11

(2020-1985)

Photo-oxidation of water using Prussian Blue as catalyst. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1985 , 81, 2461		10
Decay of high-valent manganese porphyrins in aqueous solution and catalysed formation of oxygen. <i>Journal of the Chemical Society Faraday Transactions I,</i> 1986 , 82, 3215		10
Pulse Radiolysis of TIPS-Pentacene and a Fluorene-bridged Bis(pentacene): Evidence for Intramolecular Singlet-Exciton Fission. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 3934-3938	6.4	10
Conformational Effects on the Dynamics of Internal Conversion in Boron Dipyrromethene Dyes in Solution. <i>Angewandte Chemie</i> , 2011 , 123, 6764-6767	3.6	9
Klistliche Photosynthese: Nachahmung der Redoxasymmetrie. <i>Angewandte Chemie</i> , 1998 , 110, 376-378	3.6	9
The photophysical properties of short, linear arrays of ruthenium(II) tris(2,2?-bipyridine) complexes. <i>Research on Chemical Intermediates</i> , 2007 , 33, 49-62	2.8	9
Photophysical investigation of the triplet manifold of mono- and bis-phenylethynyl-(2,2?:6?,2?-terpyridine) ruthenium(II) complexes. <i>Inorganica Chimica Acta</i> , 2006 , 359, 753-758	2.7	9
Das Tunneln von Elektronen in DNA. <i>Angewandte Chemie</i> , 1999 , 111, 996-1000	3.6	9
Exciton Migration and Surface Trapping for a Photonic Crystal Displaying Charge-Recombination Fluorescence. <i>Chemistry - A European Journal</i> , 2016 , 22, 15420-15429	4.8	9
Inhibition of the Photobleaching of Methylene Blue by Association with Urea. <i>ChemPhotoChem</i> , 2019 , 3, 1042-1049	3.3	8
Photofading of an Extended BOPHY Chromophore Dispersed in Poly(methyl methacrylate) as a Chemical Actinometer. <i>ChemPhotoChem</i> , 2018 , 2, 1046-1054	3.3	8
Synthesis of 2-aminoBODIPYs by palladium catalysed amination. <i>Organic and Biomolecular Chemistry</i> , 2017 , 15, 7643-7653	3.9	8
Using a Photoacid Generator to Switch the Direction of Electronic Energy Transfer in a Molecular Triad. <i>Angewandte Chemie</i> , 2011 , 123, 7979-7982	3.6	8
Effect of the parent ligand on the photophysical properties of closely-coupled, binuclear ruthenium(II) tris(2,2&pipyridine) complexes. <i>Dalton Transactions</i> , 2004 , 1233-8	4.3	8
Optical spectroscopic properties recorded for simple BOPHY dyes in condensed media: The mirror-symmetry factor. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2019 , 208, 57-64	4.4	8
A bifurcated molecular pentad capable of sequential electronic energy transfer and intramolecular charge transfer. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 26175-82	3.6	7
Solid-State Emission from Mono- and Bichromophoric Boron Dipyrromethene (BODIPY) Derivatives and Comparison with Fluid Solution. <i>Chemistry - A European Journal</i> , 2019 , 25, 15634-15645	4.8	7
The Photophysical Properties of Triisopropylsilyl-ethynylpentacene Molecule with an Unusually Large Singlet-Triplet Energy Gap In Solution and Solid Phases. <i>Chemistry</i> , 2020 , 2, 545-564	2.1	6
	Decay of high-valent manganese porphyrins in aqueous solution and catalysed formation of oxygen. Journal of the Chemical Society Faraday Transactions I, 1986, 82, 3215 Pulse Radiolysis of TIPS-Pentacene and a Fluorene-bridged Bis(pentacene): Evidence for Intramolecular Singlet-Exciton Fission. Journal of Physical Chemistry Letters, 2018, 9, 3934-3938 Conformational Effects on the Dynamics of Internal Conversion in Boron Dipyrromethene Dyes in Solution. Angewandte Chemie, 2011, 123, 6764-6767 Klistliche Photosynthese: Nachahmung der Redoxasymmetrie. Angewandte Chemie, 1998, 110, 376-378 The photophysical properties of short, linear arrays of ruthenium(II) tris(2,27-bipyridine) complexes. Research on Chemical Intermediates, 2007, 33, 49-62 Photophysical investigation of the triplet manifold of mono- and bis-phenylethynyl-(2,27:67,27-terpyridine) ruthenium(II) complexes. Inorganica Chimica Acta, 2006, 359, 753-758 Das Tunneln von Elektronen in DNA. Angewandte Chemie, 1999, 111, 996-1000 Exciton Migration and Surface Trapping for a Photonic Crystal Displaying Charge-Recombination Fluorescence. Chemistry - A European Journal, 2016, 22, 15420-15429 Inhibition of the Photobleaching of Methylene Blue by Association with Urea. ChemPhotoChem, 2019, 3, 1042-1049 Photofading of an Extended BOPHY Chromophore Dispersed in Poly(methyl methacrylate) as a Chemical Actinometer. ChemPhotoChem, 2018, 2, 1046-1054 Synthesis of 2-aminoBODIPYs by palladium catalysed amination. Organic and Biomolecular Chemistry, 2017, 15, 7643-7653 Using a Photoacid Generator to Switch the Direction of Electronic Energy Transfer in a Molecular Triad. Angewandte Chemie, 2011, 123, 7979-7982 Effect of the parent ligand on the photophysical properties of closely-coupled, binuclear ruthenium(III) tris(2, 2;6)piyridine) complexes. Dalton Transactions, 2004, 1233-8 Optical spectroscopic properties recorded for simple BOPHY dyes in condensed media: The mirror-symmetry factor. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy	Decay of high-valent manganese porphyrins in aqueous solution and catalysed formation of oxygen. Journal of the Chemical Society Faraday Transactions (, 1986, 82, 3215) Pulse Radiolysis of TIPS-Pentacene and a Fluorene-bridged Bis(pentacene): Evidence for Intramolecular Singlet-Exciton Fission. Journal of Physical Chemistry Letters, 2018, 9, 3934-3938 64 Conformational Effects on the Dynamics of Internal Conversion in Boron Dipyrromethene Dyes in Solution. Angewandte Chemie, 2011, 123, 6764-6767 Kristliche Photosynthese: Nachahmung der Redoxasymmetrie. Angewandte Chemie, 1998, 110, 376-378, 36 The photophysical properties of short, linear arrays of ruthenium(II) tris(2,27-bipyridine) complexes. Research on Chemical Intermediates, 2007, 33, 49-62 Photophysical investigation of the triplet manifold of mono- and bis-phenylethynyl-(2,22:67,27-terpyridine) ruthenium(II) complexes. Inorganica Chimica Acta, 2006, 27, 339, 753-758 Das Tunneln von Elektronen in DNA. Angewandte Chemie, 1999, 111, 996-1000 36 Exciton Migration and Surface Trapping for a Photonic Crystal Displaying Charge-Recombination Fluorescence. Chemistry - A European Journal, 2016, 22, 15420-15429 Photofading of an Extended BOPHY Chromophore Dispersed in Poly(methyl methacrylate) as a Chemical Actinometer. ChemPhotoChem, 2018, 2, 1046-1054 Synthesis of 2-aminoBODIPYs by palladium catalysed amination. Organic and Biomolecular Chemistry, 2017, 15, 7643-7653 Using a Photoacid Generator to Switch the Direction of Electronic Energy Transfer in a Molecular Triad. Angewandte Chemie, 2011, 123, 7979-7982 Effect of the parent ligand on the photophysical properties of dosely-coupled, binuclear ruthenium(II) tris(2, 2Qbipyridine) complexes. Dalton Transactions, 2004, 1233-8 Solid-State Emission from Mono- and Bichromophoric Boron Dipyromethene (BODIPY) Derivatives and Comparison with Fluid Solution. Chemistry - A European Journal, 2019, 25, 15634-15645 The Photophysical Properties of Triisopropylsilyl-ethynylpentacene® Molecule with an Unusually

25	End-to-end communication in a linear supermolecule with a BOPHY centre and N,N-dimethylanilino-based terminals. <i>New Journal of Chemistry</i> , 2018 , 42, 4835-4842	3.6	6
24	Photo-isomerization of the Cyanine Dye Alexa-Fluor 647 (AF-647) in the Context of dSTORM Super-Resolution Microscopy. <i>Chemistry - A European Journal</i> , 2019 , 25, 14983-14998	4.8	6
23	Intramolecular charge transfer in 2-methyl-1,3-dihydrobenz[d,e]isoquinoline: Calculation of the electronic coupling matrix element. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 4556	3.6	6
22	Photogeneration of hydrogen sensitised by a water-soluble 9-oxothioxanthene. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1988 , 84, 287		6
21	Nonradiative Decay Channels for a Structurally-Distorted, Monostrapped BODIPY Derivative. Journal of Physical Chemistry A, 2018 , 122, 9160-9170	2.8	6
20	Ultrafast Through-Space Electronic Energy Transfer in Molecular Dyads Built around Dynamic Spacer Units. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 4437-4447	2.8	5
19	Exciplex emission from a boron dipyrromethene (Bodipy) dye equipped with a dicyanovinyl appendage. <i>ChemPhysChem</i> , 2014 , 15, 177-86	3.2	5
18	Highly-strained cyclophanes bearing both photo- and electro-active constituents. <i>Tetrahedron Letters</i> , 2011 , 52, 5315-5318	2	5
17	Reduction of dinitrogen to ammonia in aqueous solution mediated by colloidal metals. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1990 , 86, 3927		5
16	Origin of Fluorescence from Boranils in the Crystalline Phase. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 2160-2172	2.8	4
15	Influence of applied pressure on the probability of electronic energy transfer across a molecular dyad. <i>Pure and Applied Chemistry</i> , 2013 , 85, 1349-1365	2.1	4
14	The quest for highly fluorescent chromophores: evaluation of 1H,3H-isochromeno[6,5,4-mna]xanthene-1,3-dione (CXD). <i>RSC Advances</i> , 2014 , 4, 53072-53078	3.7	3
13	Providing power for miniaturized medical implants: triplet sensitization of semiconductor surfaces. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2013 , 371, 201203	34	3
12	Pulse Radiolysis Investigation of Radicals Derived from Water-Soluble Cyanine Dyes: Implications for Super-resolution Microscopy. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 5779-5793	2.8	3
11	Singlet Exciton Fission and Associated Enthalpy Changes with a Covalently Linked Bichromophore Comprising TIPS-Pentacenes Held in an Open Conformation. <i>Journal of Physical Chemistry A</i> , 2021 , 125, 1184-1197	2.8	3
10	Freezing and glass transition phenomena for 1,2-dichloroethane under high pressure as revealed by fluorescence spectroscopy. <i>RSC Advances</i> , 2012 , 2, 1936	3.7	2
9	DNA Binding of a Molecular-Scale Receptor in the Presence of Zinc(II) Ions. <i>European Journal of Organic Chemistry</i> , 2005 , 2005, 1384-1391	3.2	2
8	A Lifetime in Photophysics. <i>ChemPhotoChem</i> , 2019 , 3, 120-121	3.3	1

LIST OF PUBLICATIONS

7	Photocatalysed decolouration of indigo in solution via in situ generation of an organic hydroperoxide. <i>Photochemical and Photobiological Sciences</i> , 2019 , 18, 2875-2883	4.2	1
6	Synthesis, Structure and Photophysical Properties of a New Class of Inherently Chiral Boron(III) Chelates-The tert-Leucine Complexes. <i>Chemistry - A European Journal</i> , 2021 , 27, 5246-5258	4.8	1
5	Electrochemical catalysts to meet the challenge for sustainable fuel production from renewable energy. <i>Current Opinion in Green and Sustainable Chemistry</i> , 2021 , 30, 100492	7.9	1
4	Coordination Chemistry of Calix-Phosphanes: Cooperativity in the Assembly of a Tetragold Calixarene Complex 2000 , 2000, 831		1
3	Triplet Distribution in a Symmetrical Zinc(II) Porphyrin-BODIPY Pentameric Array. <i>Journal of Physical Chemistry A</i> , 2020 , 124, 10736-10747	2.8	О
2	Photochemical Bleaching of an Elaborate Artificial Light-Harvesting Antenna. <i>ChemPhysChem</i> , 2015 , 16, 1793-1793	3.2	
1	Structure and Photophysical properties of Constrained Donor-Acceptor [2]Catenanes Bearing An Appended Secondary Donor. <i>Journal of Chemical Research</i> , 2000 , 2000, 360-361	0.6	