Naipeng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7505806/publications.pdf Version: 2024-02-01

NAIDENCL

#	Article	IF	CITATIONS
1	Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mechanical Systems and Signal Processing, 2018, 104, 799-834.	4.4	1,397
2	Applications of machine learning to machine fault diagnosis: A review and roadmap. Mechanical Systems and Signal Processing, 2020, 138, 106587.	4.4	1,338
3	A recurrent neural network based health indicator for remaining useful life prediction of bearings. Neurocomputing, 2017, 240, 98-109.	3.5	848
4	Deep Convolutional Transfer Learning Network: A New Method for Intelligent Fault Diagnosis of Machines With Unlabeled Data. IEEE Transactions on Industrial Electronics, 2019, 66, 7316-7325.	5.2	752
5	A Hybrid Prognostics Approach for Estimating Remaining Useful Life of Rolling Element Bearings. IEEE Transactions on Reliability, 2020, 69, 401-412.	3.5	744
6	An Improved Exponential Model for Predicting Remaining Useful Life of Rolling Element Bearings. IEEE Transactions on Industrial Electronics, 2015, 62, 7762-7773.	5.2	422
7	A Model-Based Method for Remaining Useful Life Prediction of Machinery. IEEE Transactions on Reliability, 2016, 65, 1314-1326.	3.5	401
8	Deep separable convolutional network for remaining useful life prediction of machinery. Mechanical Systems and Signal Processing, 2019, 134, 106330.	4.4	221
9	Applications of stochastic resonance to machinery fault detection: A review and tutorial. Mechanical Systems and Signal Processing, 2019, 122, 502-536.	4.4	210
10	Machinery health indicator construction based on convolutional neural networks considering trend burr. Neurocomputing, 2018, 292, 142-150.	3.5	199
11	A New Method Based on Stochastic Process Models for Machine Remaining Useful Life Prediction. IEEE Transactions on Instrumentation and Measurement, 2016, 65, 2671-2684.	2.4	190
12	Recurrent convolutional neural network: A new framework for remaining useful life prediction of machinery. Neurocomputing, 2020, 379, 117-129.	3.5	160
13	A Polynomial Kernel Induced Distance Metric to Improve Deep Transfer Learning for Fault Diagnosis of Machines. IEEE Transactions on Industrial Electronics, 2020, 67, 9747-9757.	5.2	141
14	Multiscale Convolutional Attention Network for Predicting Remaining Useful Life of Machinery. IEEE Transactions on Industrial Electronics, 2021, 68, 7496-7504.	5.2	139
15	A Wiener-Process-Model-Based Method for Remaining Useful Life Prediction Considering Unit-to-Unit Variability. IEEE Transactions on Industrial Electronics, 2019, 66, 2092-2101.	5.2	138
16	Subdomain Adaptation Transfer Learning Network for Fault Diagnosis of Roller Bearings. IEEE Transactions on Industrial Electronics, 2022, 69, 8430-8439.	5.2	109
17	A new fault diagnosis method based on adaptive spectrum mode extraction. Structural Health Monitoring, 2021, 20, 3354-3370.	4.3	90
18	Data-driven fault diagnosis method based on the conversion of erosion operation signals into images and convolutional neural network. Chemical Engineering Research and Design, 2021, 149, 591-601.	2.7	88

NAIPENG LI

#	Article	lF	CITATIONS
19	Remaining Useful Life Prediction Based on a General Expression of Stochastic Process Models. IEEE Transactions on Industrial Electronics, 2017, 64, 5709-5718.	5.2	86
20	Remaining useful life prediction based on a multi-sensor data fusion model. Reliability Engineering and System Safety, 2021, 208, 107249.	5.1	80
21	Fault Diagnosis of Rotating Machinery Based on an Adaptive Ensemble Empirical Mode Decomposition. Sensors, 2013, 13, 16950-16964.	2.1	74
22	Remaining useful life prediction of machinery under time-varying operating conditions based on a two-factor state-space model. Reliability Engineering and System Safety, 2019, 186, 88-100.	5.1	67
23	Degradation modeling and remaining useful life prediction for dependent competing failure processes. Reliability Engineering and System Safety, 2021, 212, 107638.	5.1	64
24	Health condition identification of multi-stage planetary gearboxes using a mRVM-based method. Mechanical Systems and Signal Processing, 2015, 60-61, 289-300.	4.4	62
25	Deep partial transfer learning network: A method to selectively transfer diagnostic knowledge across related machines. Mechanical Systems and Signal Processing, 2021, 156, 107618.	4.4	55
26	Two new features for condition monitoring and fault diagnosis of planetary gearboxes. JVC/Journal of Vibration and Control, 2015, 21, 755-764.	1.5	40
27	Multi-Sensor Data-Driven Remaining Useful Life Prediction of Semi-Observable Systems. IEEE Transactions on Industrial Electronics, 2021, 68, 11482-11491.	5.2	38
28	Joint maintenance and spare parts inventory optimization for multi-unit systems considering imperfect maintenance actions. Reliability Engineering and System Safety, 2020, 202, 106994.	5.1	37
29	A self-data-driven method for remaining useful life prediction of wind turbines considering continuously varying speeds. Mechanical Systems and Signal Processing, 2022, 165, 108315.	4.4	33
30	Deep convolution feature learning for health indicator construction of bearings. , 2017, , .		21
31	Incipient Fault Detection for Rolling Element Bearings under Varying Speed Conditions. Materials, 2017, 10, 675.	1.3	14
32	Online joint replacement-order optimization driven by a nonlinear ensemble remaining useful life prediction method. Mechanical Systems and Signal Processing, 2022, 173, 109053.	4.4	13
33	An improved fusion prognostics method for remaining useful life prediction of bearings. , 2017, , .		10
34	A Distance Metric Learning Based Health Indicator for Health Prognostics of Bearings. , 2017, , .		8
35	A nonlinear degradation model based method for remaining useful life prediction of rolling element bearings. , 2015, , .		6
36	A Hybrid Transfer Learning Method for Fault Diagnosis of Machinery under Variable Operating Conditions. , 2019, , .		5

NAIPENG LI

#	Article	IF	CITATIONS
37	A particle filtering-based approach for remaining useful life predication of rolling element bearings. , 2014, , .		4
38	Remaining Useful Life Prediction Based on Deep Residual Attention Network. , 2019, , .		4
39	Remaining Useful Life Prediction of Machinery Subjected to Two-Phase Degradation Process. , 2018, , .		1
40	Fault Detection of Planetary Gearboxes Based on an Adaptive Ensemble Empirical Mode Decomposition. Lecture Notes in Mechanical Engineering, 2015, , 837-848.	0.3	1
41	Remaining Useful Life Prediction Based on Multi-channel Attention Bidirectional Long Short-term Memory Network. , 2021, , .		1
42	Machine remaining useful life prediction considering unit-to-unit variability. , 2017, , .		0
43	An Adaptable Cost-sensitive Imbalanced Fault Diagnosis Method Considering Sample-significance Information. , 2020, , .		0