

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7505799/publications.pdf Version: 2024-02-01

Мены

#	Article	IF	CITATIONS
1	On the reactive spark plasma sinterability of ZrB2–SiC–TiN composite. Journal of Alloys and Compounds, 2022, 909, 164611.	5.5	4
2	Microstructural evolution of TiB2–SiC composites empowered with Si3N4, BN or TiN: A comparative study. Ceramics International, 2021, 47, 1002-1011.	4.8	10
3	Effects of discrete and simultaneous addition of SiC and Si3N4 on microstructural development of TiB2 ceramics. Ceramics International, 2021, 47, 3520-3528.	4.8	9
4	Thermo-mechanical simulation of ultrahigh temperature ceramic composites as alternative materials for gas turbine stator blades. Ceramics International, 2021, 47, 567-580.	4.8	16
5	Spark plasma sintering of TiB2-based ceramics with Ti3AlC2. Ceramics International, 2021, 47, 11929-11934.	4.8	16
6	A nanostructural approach to the interfacial phenomena in spark plasma sintered TiB2 ceramics with vanadium and graphite additives. Composites Part B: Engineering, 2021, 222, 109069.	12.0	10
7	Spark plasma sintering of quadruplet ZrB2–SiC–ZrC–Cf composites. Ceramics International, 2020, 46, 156-164.	4.8	36
8	Solid solution formation during spark plasma sintering of ZrB2–TiC–graphite composites. Ceramics International, 2020, 46, 2923-2930.	4.8	37
9	Heat transfer and pressure drop in a ZrB2 microchannel heat sink: A numerical approach. Ceramics International, 2020, 46, 1730-1735.	4.8	45
10	Hot pressing and oxidation behavior of ZrB2–SiC–TaC composites. Ceramics International, 2020, 46, 3725-3730.	4.8	35
11	Numerical simulation of heat transfer during spark plasma sintering of zirconium diboride. Ceramics International, 2020, 46, 4998-5007.	4.8	38
12	Nano-diamond reinforced ZrB2–SiC composites. Ceramics International, 2020, 46, 10172-10179.	4.8	62
13	Phase transformation in spark plasma sintered ZrB2–V–C composites at different temperatures. Ceramics International, 2020, 46, 9415-9420.	4.8	11
14	Triplet carbide composites of TiC, WC, and SiC. Ceramics International, 2020, 46, 9070-9078.	4.8	60
15	Influence of TiB2 content on the properties of TiC–SiCw composites. Ceramics International, 2020, 46, 7403-7412.	4.8	54
16	Role of co-addition of BN and SiC on microstructure of TiB2-based composites densified by SPS method. Ceramics International, 2020, 46, 25341-25350.	4.8	32
17	A novel TiC-based composite co-strengthened with AlN particulates and graphene nano-platelets. International Journal of Refractory Metals and Hard Materials, 2020, 92, 105331.	3.8	25
18	Enhanced densification of spark plasma sintered TiB2 ceramics with low content AlN additive. Ceramics International, 2020, 46, 22127-22133.	4.8	33

Mehdi

#	Article	IF	CITATIONS
19	Densification behavior and microstructure development in TiB2 ceramics doped with h-BN. Ceramics International, 2020, 46, 18970-18975.	4.8	56
20	Numerical assessment of beryllium oxide as an alternative material for micro heat exchangers. Ceramics International, 2020, 46, 19248-19255.	4.8	31
21	A microstructural approach to the chemical reactions during the spark plasma sintering of novel TiC–BN ceramics. Ceramics International, 2020, 46, 15982-15990.	4.8	42
22	Beneficial role of carbon black on the properties of TiC ceramics. Ceramics International, 2020, 46, 23544-23555.	4.8	35
23	Densification and toughening mechanisms in spark plasma sintered ZrB2-based composites with zirconium and graphite additives. Ceramics International, 2020, 46, 13685-13694.	4.8	60
24	Strengthening of novel TiC–AlN ceramic with in-situ synthesized Ti3Al intermetallic compound. Ceramics International, 2020, 46, 14105-14113.	4.8	53
25	Strengthening of TiC ceramics sintered by spark plasma via nano-graphite addition. Ceramics International, 2020, 46, 12400-12408.	4.8	66
26	Effects of graphite nano-flakes on thermal and microstructural properties of TiB2–SiC composites. Ceramics International, 2020, 46, 11622-11630.	4.8	71
27	Microstructural and mechanical characterization of spark plasma sintered TiC ceramics with TiN additive. Ceramics International, 2020, 46, 18924-18932.	4.8	45
28	Characterization of spark plasma sintered TiC ceramics reinforced with graphene nano-platelets. Ceramics International, 2020, 46, 18742-18749.	4.8	48
29	Role of nano-WC addition on microstructural, mechanical and thermal characteristics of TiC–SiCw composites. International Journal of Refractory Metals and Hard Materials, 2020, 90, 105248.	3.8	59
30	Role of nano-diamond addition on the characteristics of spark plasma sintered TiC ceramics. Diamond and Related Materials, 2020, 106, 107828.	3.9	49
31	Influence of SiAlON addition on the microstructure development of hot-pressed ZrB2–SiC composites. Ceramics International, 2020, 46, 19209-19216.	4.8	58
32	A novel ZrB2–C3N4 composite with improved mechanical properties. Ceramics International, 2019, 45, 21512-21519.	4.8	66
33	Nanoindentation and nanostructural characterization of ZrB2–SiC composite doped with graphite nano-flakes. Composites Part B: Engineering, 2019, 175, 107153.	12.0	84
34	The effect of thermal contact resistance on the temperature distribution in a WC made cutting tool. Ceramics International, 2019, 45, 22196-22202.	4.8	72
35	Spark plasma sintering of TiC–SiCw ceramics. Ceramics International, 2019, 45, 19808-19821.	4.8	88
36	A numerical approach to the heat transfer and thermal stress in a gas turbine stator blade made of HfB2. Ceramics International, 2019, 45, 24060-24069.	4.8	77

Менді

#	Article	IF	CITATIONS
37	Thermal diffusivity and microstructure of spark plasma sintered TiB2SiC Ti composite. Ceramics International, 2019, 45, 8333-8344.	4.8	82
38	Investigation of hot pressed ZrB2–SiC–carbon black nanocomposite by scanning and transmission electron microscopy. Ceramics International, 2019, 45, 16759-16764.	4.8	66
39	Spark plasma sintering of ZrB2-based composites co-reinforced with SiC whiskers and pulverized carbon fibers. International Journal of Refractory Metals and Hard Materials, 2019, 83, 104989.	3.8	65
40	TiB2–SiC-based ceramics as alternative efficient micro heat exchangers. Ceramics International, 2019, 45, 19060-19067.	4.8	85
41	Heat transfer, thermal stress and failure analyses in a TiB2 gas turbine stator blade. Ceramics International, 2019, 45, 19331-19339.	4.8	80
42	Numerical analyses of heat transfer and thermal stress in a ZrB2 gas turbine stator blade. Ceramics International, 2019, 45, 17742-17750.	4.8	77
43	A numerical approach to the heat transfer in monolithic and SiC reinforced HfB2, ZrB2 and TiB2 ceramic cutting tools. Ceramics International, 2019, 45, 15892-15897.	4.8	86
44	Microstructural, thermal and mechanical characterization of TiB2–SiC composites doped with short carbon fibers. International Journal of Refractory Metals and Hard Materials, 2019, 82, 129-135.	3.8	97
45	Reactive spark plasma sintering of TiB2–SiC–TiN novel composite. International Journal of Refractory Metals and Hard Materials, 2019, 81, 119-126.	3.8	94
46	Pressureless sintering of ZrB2 ceramics codoped with TiC and graphite. International Journal of Refractory Metals and Hard Materials, 2019, 81, 189-195.	3.8	68
47	Spark plasma sintering of Al-doped ZrB2–SiC composite. Ceramics International, 2019, 45, 4262-4267.	4.8	97
48	Spark plasma sintering of TiN ceramics codoped with SiC and CNT. Ceramics International, 2019, 45, 3207-3216.	4.8	99
49	Microstructure and thermomechanical characteristics of spark plasma sintered TiC ceramics doped with nano-sized WC. Ceramics International, 2019, 45, 2153-2160.	4.8	107
50	Influence of TiN dopant on microstructure of TiB2 ceramic sintered by spark plasma. Ceramics International, 2019, 45, 5306-5311.	4.8	51
51	Microstructural investigation of spark plasma sintered TiB2 ceramics with Si3N4 addition. Ceramics International, 2018, 44, 13367-13372.	4.8	86
52	Effects of carbon additives on the properties of ZrB2–based composites: A review. Ceramics International, 2018, 44, 7334-7348.	4.8	177
53	Effects of nano-graphite content on the characteristics of spark plasma sintered ZrB2–SiC composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 716, 99-106.	5.6	99
54	Densification improvement of spark plasma sintered TiB2-based composites with micron-, submicron- and nano-sized SiC particulates. Ceramics International, 2018, 44, 11431-11437.	4.8	100

Менді

#	Article	IF	CITATIONS
55	Synergistic effects of graphite nano-flakes and submicron SiC particles on the characteristics of spark plasma sintered ZrB2 nanocomposites. International Journal of Refractory Metals and Hard Materials, 2018, 75, 10-17.	3.8	82
56	A statistical approach towards processing optimization of ZrB2–SiC–graphite nanocomposites. Part I: Relative density. Ceramics International, 2018, 44, 6935-6939.	4.8	72
57	Effects of sintering temperature on microstructure and mechanical properties of spark plasma sintered titanium. Materials Chemistry and Physics, 2018, 203, 266-273.	4.0	95
58	Phase evolution during spark plasma sintering of novel Si3N4-doped TiB2–SiC composite. Materials Characterization, 2018, 145, 225-232.	4.4	83
59	TEM characterization of spark plasma sintered ZrB2–SiC–graphene nanocomposite. Ceramics International, 2018, 44, 15269-15273.	4.8	103
60	Effects of spark plasma sintering temperature on densification, hardness and thermal conductivity of titanium carbide. Ceramics International, 2018, 44, 14541-14546.	4.8	122
61	A novel ZrB2–VB2–ZrC composite fabricated by reactive spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 731, 131-139.	5.6	82
62	Sintering behavior of ZrB2–SiC composites doped with Si3N4: A fractographical approach. Ceramics International, 2017, 43, 9699-9708.	4.8	85
63	Densification, microstructure and mechanical properties of hot pressed ZrB 2 –SiC ceramic doped with nano-sized carbon black. Ceramics International, 2017, 43, 8411-8417.	4.8	96
64	Effect of TiB 2 content on the characteristics of spark plasma sintered Ti–TiB w composites. Advanced Powder Technology, 2017, 28, 1564-1572.	4.1	111
65	Contribution of SiC particle size and spark plasma sintering conditions on grain growth and hardness of TiB2 composites. Ceramics International, 2017, 43, 13924-13931.	4.8	96
66	Microstructure, hardness and fracture toughness of spark plasma sintered ZrB2–SiC–Cf composites. Ceramics International, 2017, 43, 15047-15052.	4.8	79
67	Synergetic effects of SiC and Csf in ZrB2-based ceramic composites. Part II: Grain growth. Ceramics International, 2016, 42, 18612-18619.	4.8	64
68	Characterization of hot pressed SiC whisker reinforced TiB 2 based composites. International Journal of Refractory Metals and Hard Materials, 2016, 61, 84-90.	3.8	96
69	Influence of silicon carbide addition on the microstructural development of hot pressed zirconium and titanium diborides. Ceramics International, 2016, 42, 5375-5381.	4.8	95
70	Characteristics of multi-walled carbon nanotube toughened ZrB 2 –SiC ceramic composite prepared by hot pressing. Ceramics International, 2016, 42, 1950-1958.	4.8	131
71	Reactive hot pressing of ZrB2-based composites with changes in ZrO2/SiC ratio and sintering conditions. Part I: Densification behavior. Ceramics International, 2015, 41, 8388-8396.	4.8	66
72	Influence of graphite nano-flakes on densification and mechanical properties of hot-pressed ZrB2–SiC composite. Ceramics International, 2015, 41, 5843-5851.	4.8	94

Mehdi

#	Article	IF	CITATIONS
73	Significance of hot pressing parameters and reinforcement size on densification behavior of ZrB2–25vol% SiC UHTCs. Ceramics International, 2015, 41, 6439-6447.	4.8	61
74	Significance of hot pressing parameters on the microstructure and densification behavior of zirconium diboride. International Journal of Refractory Metals and Hard Materials, 2015, 50, 140-145.	3.8	62
75	Fractographical characterization of hot pressed and pressureless sintered SiAlON-doped ZrB2–SiC composites. Materials Characterization, 2015, 102, 137-145.	4.4	74
76	A Taguchi approach to the influence of hot pressing parameters and SiC content on the sinterability of ZrB2-based composites. International Journal of Refractory Metals and Hard Materials, 2015, 51, 81-90.	3.8	60
77	Significance of hot pressing parameters and reinforcement size on sinterability and mechanical properties of ZrB2–25vol% SiC UHTCs. Ceramics International, 2015, 41, 9628-9636.	4.8	61
78	Microstructural development and mechanical properties of hot pressed SiC reinforced TiB2 based composite. International Journal of Refractory Metals and Hard Materials, 2015, 51, 169-179.	3.8	120
79	Fractographical characterization of hot pressed and pressureless sintered AlN-doped ZrB2–SiC composites. Materials Characterization, 2015, 110, 77-85.	4.4	76
80	Characterization of hot-pressed graphene reinforced ZrB 2 –SiC composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 625, 385-392.	5.6	144
81	Taguchi analysis on the effect of hot pressing parameters on density and hardness of zirconium diboride. International Journal of Refractory Metals and Hard Materials, 2015, 50, 313-320.	3.8	59
82	A fractographical approach to the sintering process in porous ZrB2–B4C binary composites. Ceramics International, 2015, 41, 379-387.	4.8	67
83	Hardness and toughness of hot pressed ZrB2–SiC composites consolidated under relatively low pressure. Journal of Alloys and Compounds, 2015, 619, 481-487.	5.5	116
84	Fractographical assessment of densification mechanisms in hot pressed ZrB2-SiC composites. Ceramics International, 2014, 40, 15273-15281.	4.8	68