John F Kuemmerle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7505756/publications.pdf

Version: 2024-02-01

34 1,068 19
papers citations h-index

34 34 34 1547 all docs docs citations times ranked citing authors

32

g-index

#	Article	IF	CITATIONS
1	Mechanisms That Mediate the Development of Fibrosis in Patients With Crohn's Disease. Inflammatory Bowel Diseases, 2014, 20, 1250-1258.	1.9	95
2	Noncanonical STAT3 Activation Regulates Excess TGF- \hat{l}^21 and Collagen I Expression in Muscle of Stricturing Crohnâ \in ^{TMs} Disease. Journal of Immunology, 2015, 194, 3422-3431.	0.8	93
3	Coupling of the Insulin-like Growth Factor-I Receptor Tyrosine Kinase to Gi2 in Human Intestinal Smooth Muscle. Journal of Biological Chemistry, 2001, 276, 7187-7194.	3.4	78
4	Characterization of Genetic Loci That Affect Susceptibility to Inflammatory Bowel Diseases in African Americans. Gastroenterology, 2015, 149, 1575-1586.	1.3	65
5	Insulin-like Growth Factor-binding Protein-5 (IGFBP-5) Stimulates Growth and IGF-I Secretion in Human Intestinal Smooth Muscle by Ras-dependent Activation of p38 MAP Kinase and $Erk1/2$ Pathways. Journal of Biological Chemistry, 2002, 277, 20563-20571.	3.4	62
6	Increased Activation of Latent TGF-Î ² 1 by αVÎ ² 3 in Human CrohnÊ ¹ /4s Disease and Fibrosis in TNBS Colitis Can Be Prevented by Cilengitide. Inflammatory Bowel Diseases, 2013, 19, 2829-2839.	1.9	57
7	Insulin-Like Growth Factors in the Gastrointestinal Tract and Liver. Endocrinology and Metabolism Clinics of North America, 2012, 41, 409-423.	3.2	54
8	IGF-I elicits growth of human intestinal smooth muscle cells by activation of PI3K, PDK-1, and p70S6 kinase. American Journal of Physiology - Renal Physiology, 2003, 284, G411-G422.	3.4	49
9	IGFBP-3 activates TGF-β receptors and directly inhibits growth in human intestinal smooth muscle cells. American Journal of Physiology - Renal Physiology, 2004, 287, G795-G802.	3.4	45
10	Endogenous IGF-I protects human intestinal smooth muscle cells from apoptosis by regulation of GSK-31 ² activity. American Journal of Physiology - Renal Physiology, 2005, 288, G101-G110.	3.4	44
11	Endogenous IGF-I and $\hat{l}\pm V\hat{l}^2$ 3 Integrin Ligands Regulate Increased Smooth Muscle Hyperplasia in Stricturing Crohn's Disease. Gastroenterology, 2010, 138, 285-293.	1.3	44
12	Activation of the umami taste receptor (T1R1/T1R3) initiates the peristaltic reflex and pellet propulsion in the distal colon. American Journal of Physiology - Renal Physiology, 2014, 307, G1100-G1107.	3.4	42
13	IGF-I stimulates human intestinal smooth muscle cell growth by regulation of G1 phase cell cycle proteins. American Journal of Physiology - Renal Physiology, 2004, 286, G412-G419.	3.4	37
14	Occupation of $\hat{l}\pm v\hat{l}^2$ 3-integrin by endogenous ligands modulates IGF-I receptor activation and proliferation of human intestinal smooth muscle. American Journal of Physiology - Renal Physiology, 2006, 290, G1194-G1202.	3.4	33
15	Endogenous IGFBP-3 regulates excess collagen expression in intestinal smooth muscle cells of Crohnʾs disease strictures. Inflammatory Bowel Diseases, 2011, 17, 193-201.	1.9	30
16	Amelioration of excess collagen $\hat{l}_{\pm}l$, fibrosis, and smooth muscle growth in TNBS-induced colitis in IGF- $l(+/\hat{a}^{-2})$ mice. Inflammatory Bowel Diseases, 2011, 17, 711-719.	1.9	27
17	IGFBP-3 and IGFBP-5 production by human intestinal muscle: reciprocal regulation by endogenous TGF- \hat{l}^21 . American Journal of Physiology - Renal Physiology, 1998, 275, G1282-G1290.	3.4	25
18	Endogenous IGF-I and $\hat{l}\pm v\hat{l}^23$ integrin ligands regulate increased smooth muscle growth in TNBS-induced colitis. American Journal of Physiology - Renal Physiology, 2009, 296, G1230-G1237.	3.4	24

#	Article	IF	CITATIONS
19	Endogenous IGF-I regulates IGF binding protein production in human intestinal smooth muscle cells. American Journal of Physiology - Renal Physiology, 2000, 278, G710-G717.	3.4	23
20	The fate of myofibroblasts during the development of fibrosis in Crohn's disease. Journal of Digestive Diseases, 2020, 21, 326-331.	1.5	21
21	Hypercontractility of Intestinal Longitudinal Smooth Muscle Induced by Cytokines Is Mediated by the Nuclear Factor- $\langle i \rangle$ $\hat{l}^2 \langle i \rangle$ B/AMP-Activated Kinase/Myosin Light Chain Kinase Pathway. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 89-98.	2.5	20
22	Increased IGF-IEc expression and mechano-growth factor production in intestinal muscle of fibrostenotic Crohn's disease and smooth muscle hypertrophy. American Journal of Physiology - Renal Physiology, 2015, 309, G888-G899.	3.4	18
23	Insulin-like growth factor-binding protein-5 stimulates growth of human intestinal muscle cells by activation of Gαi3. American Journal of Physiology - Renal Physiology, 2009, 297, G1232-G1238.	3.4	17
24	Regulation of IGFBP-4 levels in human intestinal muscle by an IGF-I-activated, confluence-dependent protease. American Journal of Physiology - Renal Physiology, 2000, 279, G975-G982.	3.4	12
25	Timing of Last Preoperative Dose of Infliximab Does Not Increase Postoperative Complications in Inflammatory Bowel Disease Patients. Digestive Diseases and Sciences, 2016, 61, 2602-2607.	2.3	10
26	The Pathogenesis and Clinical Management of Stricturing Crohn Disease. Inflammatory Bowel Diseases, 2021, 27, 1839-1852.	1.9	10
27	Cytokine-induced iNOS and ERK1/2 inhibit adenylyl cyclase type 5/6 activity and stimulate phosphodiesterase 4D5 activity in intestinal longitudinal smooth muscle. American Journal of Physiology - Cell Physiology, 2014, 307, C402-C411.	4.6	9
28	Jun kinase-induced overexpression of leukemia-associated Rho GEF (LARG) mediates sustained hypercontraction of longitudinal smooth muscle in inflammation. American Journal of Physiology - Cell Physiology, 2014, 306, C1129-C1141.	4.6	9
29	Genetic and epigenetic regulation of intestinal fibrosis. United European Gastroenterology Journal, 2016, 4, 496-505.	3.8	7
30	ABIM Maintenance of Certification 2014: Navigating the Challenges toÂFind Opportunities for Success. Gastroenterology, 2014, 147, 260-263.	1.3	5
31	Effective Use of Technology in Gastroenterology Training. Gastroenterology, 2012, 143, 881-884.	1.3	2
32	Murine Trinitrobenzoic Acid-Induced Colitis as a Model of Crohn's Disease. Methods in Molecular Biology, 2016, 1422, 243-252.	0.9	1
33	Expression and Function of Bile Acid Receptor TGR5 in Gastrointestinal Smooth Muscle. FASEB Journal, 2011, 25, .	0.5	0
34	Increased Mechanoâ€Growth Factor (MGF) expression in Crohn's disease mediates smooth muscle hypertrophy in intestinal strictures via activation of Erk5. FASEB Journal, 2013, 27, 940.20.	0.5	0