Abdolkarim Zarei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7505233/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential responses of pear cultivars to Erwinia amylovora infection; evidences of involvement the hypersensitivity response in pear resistance to fire blight. European Journal of Plant Pathology, 2022, 162, 927-943.	1.7	3

The First Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Pistachio (Pistacia) Tj ETQq000 rgBT /Overlock 10 Tf 50 $^{\circ}$

3	Analysis of fatty acid compositions and differential gene expression in two Iranian olive cultivars during fruit ripening. Acta Physiologiae Plantarum, 2021, 43, 1.	2.1	4
4	A comparative assessment of morphological and molecular characterization among three Ziziphus species. Physiology and Molecular Biology of Plants, 2021, 27, 1007-1025.	3.1	3
5	SCoT markers provide insight into the genetic diversity, population structure and phylogenetic relationships among three Pistacia species of Iran. Genetic Resources and Crop Evolution, 2021, 68, 1625-1643.	1.6	15
6	Influence of different soil amendments on drought stress tolerance of Maclura pomifera. Plant Physiology Reports, 2020, 25, 405-417.	1.5	4
7	The Influence of Fertilization on Pomegranate Susceptibility to Infestation by <i>Ectomyelois ceratoniae</i> . International Journal of Fruit Science, 2020, 20, S1156-S1173.	2.4	6

8 An efficient protocol for micropropagation of old cypress of Abarkuh (Cupressus sempervirens var.) Tj ETQq0 0 0 rgBT /Overlqck 10 Tf 5

9	Drought stress and TiO2 nanoparticles affect the composition of different active compounds in the Moldavian dragonhead plant. Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	35
10	In vitro regeneration of the isolated shoot apical meristem of two commercial fig cultivars â€~Sabz' and â€~Jaami-e-Kan'. Biocatalysis and Agricultural Biotechnology, 2019, 17, 743-749.	3.1	7
11	Positive effects of foliar application of Ca, B and GA3 on the qualitative and quantitative traits of pomegranate (Punica granatum L.) cv. â€~Malase-Torshe-Saveh'. Scientia Horticulturae, 2019, 254, 40-47.	3.6	21
12	Analysis the effects of pollen grain sources on the fruits set and their characteristics of â€ [~] Clementine' mandarin using microscopic and molecular approaches. Scientia Horticulturae, 2019, 249, 347-354.	3.6	7
13	Assessment of variability within and among four Pyrus species using multivariate analysis. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 250, 27-36.	1.2	19
14	Positive effects of plant growth regulators on physiology responses of <i>Fragaria × ananassa</i> cv. <i>â€~</i> Camarosa' under salt stress. International Journal of Fruit Science, 2019, 19, 104-114.	2.4	17
15	Molecular characterization of pomegranate (Punica granatum L.) accessions from Fars Province of Iran using microsatellite markers. Horticulture Environment and Biotechnology, 2018, 59, 239-249.	2.1	14
16	Phylogeny relationship among commercial and wild pear species based on morphological characteristics and SCoT molecular markers. Scientia Horticulturae, 2018, 235, 323-333.	3.6	25
17	Assessment of genetic structure among different pear species (<i>Pyrus</i> spp.) using apple-derived SSR and evidence of duplications in the pear genome. Biotechnology and Biotechnological Equipment, 2018, 32, 591-601.	1.3	7
18	Effects of Vanadyl Sulfate on Media Consumption by Satureja khuzistanica Cells and Rosmarinic Acid Biosynthesis. Journal of Crop Breeding, 2018, 9, 186-191.	0.1	0

Abdolkarim Zarei

#	Article	IF	CITATIONS
19	Phylogenetic analysis among some pome fruit trees of Rosaceae family using RAPD markers. Biotechnology and Biotechnological Equipment, 2017, 31, 289-298.	1.3	25
20	Response of Strawberry Plant cv. â€~Camarosa' to Salicylic Acid and Methyl Jasmonate Application Under Salt Stress Condition. Journal of Plant Growth Regulation, 2017, 36, 651-659.	5.1	77
21	Genetic diversity of Persian walnut (Juglans regia) in the cold-temperate zone of the United States and Europe. Scientia Horticulturae, 2017, 220, 36-41.	3.6	33
22	Evaluation of genetic variability among "Early Matureâ€∢i>Juglans regiausing microsatellite markers and morphological traits. PeerJ, 2017, 5, e3834.	2.0	19
23	Somatic Embryogenesis from Anther, Whole Flower, and Leaf Explants of Some Grapevine Cultivars. Plant Tissue Culture and Biotechnology, 2016, 26, 219-230.	0.2	3
24	Genetic diversity and genetic structure of Persian walnut (Juglans regia) accessions from 14 European, African, and Asian countries using SSR markers. Tree Genetics and Genomes, 2016, 12, 1.	1.6	45
25	Differential expression of cell wall related genes in the seeds of soft- and hard-seeded pomegranate genotypes. Scientia Horticulturae, 2016, 205, 7-16.	3.6	31
26	Analysis of the Phenylpropanoid Enzyme Activities and Products in the Soft- and Hard-Seeded Pomegranate Genotypes During Fruit Development. International Journal of Fruit Science, 2016, 16, 242-258.	2.4	8
27	Comparison of CBF1, CBF2, CBF3 and CBF4 expression in some grapevine cultivars and species under cold stress. Scientia Horticulturae, 2015, 197, 521-526.	3.6	22
28	A Mechanical Method of Determining Seed-Hardness in Pomegranate. Journal of Crop Improvement, 2013, 27, 444-459.	1.7	16
29	Characterization of progenies derived from pollination of pomegranate cv. Malase-Tourshe-Saveh using fruit traits and RAPD molecular marker. Scientia Horticulturae, 2010, 124, 67-73.	3.6	26
30	Study on some morphological and physical attributes of walnut used in mass models. Scientia Horticulturae, 2009, 121, 490-494.	3.6	19