Carles Cane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7504916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improvement of the quality factor of RF integrated inductors by layout optimization. IEEE Transactions on Microwave Theory and Techniques, 2000, 48, 76-83.	2.9	216
2	Micromachined twin gas sensor for CO and O2 quantification based on catalytically modified nano-SnO2. Sensors and Actuators B: Chemical, 2006, 114, 881-892.	4.0	124
3	A novel single chip thin film metal oxide array. Sensors and Actuators B: Chemical, 2003, 93, 350-355.	4.0	119
4	Multi-range silicon micromachined flow sensor. Sensors and Actuators A: Physical, 2004, 110, 282-288.	2.0	112
5	Thermal and mechanical analysis of micromachined gas sensors. Journal of Micromechanics and Microengineering, 2003, 13, 548-556.	1.5	111
6	Sensitivity and selectivity improvement of rf sputtered WO3 microhotplate gas sensors. Sensors and Actuators B: Chemical, 2006, 113, 241-248.	4.0	101
7	A Parts Per Billion (ppb) Sensor for NO ₂ with Microwatt (μW) Power Requirements Based on Micro Light Plates. ACS Sensors, 2019, 4, 822-826.	4.0	85
8	High-temperature low-power performing micromachined suspended micro-hotplate for gas sensing applications. Sensors and Actuators B: Chemical, 2006, 114, 826-835.	4.0	81
9	Gas sensors based on multiwall carbon nanotubes decorated with tin oxide nanoclusters. Sensors and Actuators B: Chemical, 2010, 145, 411-416.	4.0	81
10	Nanoscale Heterostructures Based on Fe ₂ O ₃ @WO _{3-x} Nanoneedles and Their Direct Integration into Flexible Transducing Platforms for Toluene Sensing. ACS Applied Materials & Interfaces, 2015, 7, 18638-18649.	4.0	79
11	Chemical warfare agents simulants detection with an optimized SAW sensor array. Sensors and Actuators B: Chemical, 2011, 154, 199-205.	4.0	78
12	Micro-machined WO3-based sensors selective to oxidizing gases. Sensors and Actuators B: Chemical, 2008, 132, 209-215.	4.0	77
13	Measurement of residual stress by slot milling with focused ion-beam equipment. Journal of Micromechanics and Microengineering, 2006, 16, 254-259.	1.5	76
14	Fabrication of WO3 nanodot-based microsensors highly sensitive to hydrogen. Sensors and Actuators B: Chemical, 2010, 149, 352-361.	4.0	71
15	Quantitative gas mixture analysis using temperature-modulated micro-hotplate gas sensors: Selection and validation of the optimal modulating frequencies. Sensors and Actuators B: Chemical, 2007, 123, 1002-1016.	4.0	68
16	Non-selective NDIR array for gas detection. Sensors and Actuators B: Chemical, 2007, 127, 69-73.	4.0	67
17	Microtechnologies for PH ISFET chemical sensors. Microelectronics Journal, 1997, 28, 389-405.	1.1	66
18	Bias correction of an ocean-atmosphere coupled model. Geophysical Research Letters, 2000, 27, 2585-2588.	1.5	64

#	Article	IF	CITATIONS
19	Detection of SO2 and H2S in CO2 stream by means of WO3-based micro-hotplate sensors. Sensors and Actuators B: Chemical, 2004, 102, 219-225.	4.0	64
20	The use of ferrofluids in micromechanics. Sensors and Actuators A: Physical, 2000, 84, 176-180.	2.0	62
21	A micromachined solid state integrated gas sensor for the detection of aromatic hydrocarbons. Sensors and Actuators B: Chemical, 1997, 44, 483-487.	4.0	61
22	Electrical characterization of thermomechanically stable YSZ membranes for micro solid oxide fuel cells applications. Solid State Ionics, 2010, 181, 322-331.	1.3	61
23	Towards a micro-system for monitoring ethylene in warehouses. Sensors and Actuators B: Chemical, 2005, 111-112, 63-70.	4.0	59
24	Digital image correlation of nanoscale deformation fields for local stress measurement in thin films. Nanotechnology, 2006, 17, 5264-5270.	1.3	57
25	Residual Stress Measurement on a MEMS Structure With High-Spatial Resolution. Journal of Microelectromechanical Systems, 2007, 16, 365-372.	1.7	56
26	Ozone monitoring by micro-machined sensors with WO3 sensing films. Sensors and Actuators B: Chemical, 2007, 126, 573-578.	4.0	53
27	Detection of volatile organic compounds using surface acoustic wave sensors with different polymer coatings. Thin Solid Films, 2004, 467, 234-238.	0.8	51
28	Detection of low NO2 concentrations with low power micromachined tin oxide gas sensors. Sensors and Actuators B: Chemical, 1999, 58, 325-329.	4.0	50
29	Sub-ppm gas sensor detection via spiral μ-preconcentrator. Sensors and Actuators B: Chemical, 2008, 132, 149-154.	4.0	49
30	Love-wave sensor array to detect, discriminate and classify chemical warfare agent simulants. Sensors and Actuators B: Chemical, 2012, 175, 173-178.	4.0	49
31	Thermal and mechanical aspects for designing micromachined low-power gas sensors. Journal of Micromechanics and Microengineering, 1997, 7, 247-249.	1.5	48
32	Screen-printed nanoparticle tin oxide films for high-yield sensor microsystems. Sensors and Actuators B: Chemical, 2003, 96, 94-104.	4.0	44
33	Influence of current collectors design on the performance of a silicon-based passive micro direct methanol fuel cell. Journal of Power Sources, 2009, 194, 391-396.	4.0	44
34	Chemoresistive micromachined gas sensors based on functionalized metal oxide nanowires: Performance and reliability. Sensors and Actuators B: Chemical, 2016, 235, 525-534.	4.0	44
35	Gas sensors based on individual indium oxide nanowire. Sensors and Actuators B: Chemical, 2017, 238, 447-454.	4.0	44
36	Discrimination of volatile compounds through an electronic nose based on ZnO SAW sensors. Sensors and Actuators B: Chemical, 2007, 127, 277-283.	4.0	43

#	Article	IF	CITATIONS
37	ZnO Rods with Exposed {100} Facets Grown via a Self-Catalyzed Vapor–Solid Mechanism and Their Photocatalytic and Gas Sensing Properties. ACS Applied Materials & Interfaces, 2016, 8, 33335-33342.	4.0	42
38	Micro light plates for low-power photoactivated (gas) sensors. Applied Physics Letters, 2019, 114, .	1.5	42
39	Measurement of residual stresses in micromachined structures in a microregion. Applied Physics Letters, 2006, 88, 071910.	1.5	41
40	On-line monitoring of CO2 quality using doped WO3 thin film sensors. Thin Solid Films, 2006, 500, 302-308.	0.8	41
41	Fabrication and characterization of a passive silicon-based direct methanol fuel cell. Microsystem Technologies, 2008, 14, 535-541.	1.2	41
42	Detection of gases with arrays of micromachined tin oxide gas sensors. Sensors and Actuators B: Chemical, 2000, 65, 244-246.	4.0	40
43	Sensitivity improvement of a microcantilever based mass sensor. Microelectronic Engineering, 2009, 86, 1187-1189.	1.1	40
44	Optimized temperature modulation of micro-hotplate gas sensors through pseudorandom binary sequences. IEEE Sensors Journal, 2005, 5, 1369-1378.	2.4	38
45	FIB-based technique for stress characterization on thin films for reliability purposes. Microelectronic Engineering, 2007, 84, 1783-1787.	1.1	37
46	Towards a compact SU-8 micro-direct methanol fuel cell. Journal of Power Sources, 2010, 195, 8110-8115.	4.0	37
47	High temperature degradation of Pt/Ti electrodes in micro-hotplate gas sensors. Journal of Micromechanics and Microengineering, 2003, 13, S119-S124.	1.5	35
48	Optimization of SAW sensors with a structure ZnO–SiO2–Si to detect volatile organic compounds. Sensors and Actuators B: Chemical, 2006, 118, 356-361.	4.0	35
49	Performance optimization of a passive silicon-based micro-direct methanol fuel cell. Sensors and Actuators B: Chemical, 2008, 132, 540-544.	4.0	35
50	Structural and dimensional control in micromachined integrated solid state gas sensors. Sensors and Actuators B: Chemical, 2000, 69, 314-319.	4.0	34
51	Thermo-mechanical analysis of micro-drop coated gas sensors. Sensors and Actuators A: Physical, 2002, 97-98, 379-385.	2.0	34
52	Optimised temperature modulation of metal oxide micro-hotplate gas sensors through multilevel pseudo random sequences. Sensors and Actuators B: Chemical, 2005, 111-112, 271-280.	4.0	34
53	Detection of volatile organic compounds using flexible gas sensing devices based on tungsten oxide nanostructures functionalized with Au and Pt nanoparticles. Talanta, 2015, 139, 27-34.	2.9	34
54	MEMS-microhotplate-based hydrogen gas sensor utilizing the nanostructured porous-anodic-alumina-supported WO3 active layer. International Journal of Hydrogen Energy, 2013, 38, 8011-8021.	3.8	33

#	Article	IF	CITATIONS
55	Localized growth and in situ integration of nanowires for device applications. Chemical Communications, 2012, 48, 4734.	2.2	32
56	Intracellular stability of the interfering activity of a defective interfering influenza virus in the absence of virus multiplication. Virology, 1987, 159, 259-264.	1.1	31
57	Site-selectively grown SnO2 NWs networks on micromembranes for efficient ammonia sensing in humid conditions. Sensors and Actuators B: Chemical, 2016, 232, 402-409.	4.0	31
58	Site-Specific Growth and in Situ Integration of Different Nanowire Material Networks on a Single Chip: Toward a Nanowire-Based Electronic Nose for Gas Detection. ACS Sensors, 2018, 3, 727-734.	4.0	31
59	On the effects of the materials and the noble metal additives to NO2 detection. Sensors and Actuators B: Chemical, 2006, 118, 311-317.	4.0	30
60	Microsensors based on Pt–nanoparticle functionalised tungsten oxide nanoneedles for monitoring hydrogen sulfide. RSC Advances, 2014, 4, 1489-1495.	1.7	30
61	Results on the reliability of silicon micromachined structures for semiconductor gas sensors. Sensors and Actuators B: Chemical, 2001, 77, 409-415.	4.0	29
62	Membrane-suspended microgrid as a gas preconcentrator for chromatographic applications. Sensors and Actuators A: Physical, 2007, 135, 192-196.	2.0	29
63	Multilayer ISFET membranes for microsystems applications. Sensors and Actuators B: Chemical, 1996, 35, 136-140.	4.0	28
64	Detection of bacteriophages in dynamic mode using a Love-wave immunosensor with microfluidics technology. Sensors and Actuators B: Chemical, 2013, 185, 218-224.	4.0	28
65	A novel methodology for the manufacturability of robust CMOS semiconductor gas sensor arrays. Sensors and Actuators B: Chemical, 2001, 77, 395-400.	4.0	27
66	A Reusable Smart Interface for Gas Sensor Resistance Measurement. IEEE Transactions on Instrumentation and Measurement, 2004, 53, 1173-1178.	2.4	27
67	Single-walled carbon nanotube microsensors for nerve agent simulant detection. Sensors and Actuators B: Chemical, 2011, 157, 253-259.	4.0	27
68	Blood flow in the common carotid artery in term and preterm infants: reproducibility and relation to cardiac output. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2005, 91, F31-F35.	1.4	25
69	Love-Wave Sensors Combined with Microfluidics for Fast Detection of Biological Warfare Agents. Sensors, 2014, 14, 12658-12669.	2.1	25
70	Sputtered and screen-printed metal oxide-based integrated micro-sensor arrays for the quantitative analysis of gas mixtures. Sensors and Actuators B: Chemical, 2004, 103, 23-30.	4.0	24
71	Array of Love-wave sensors based on quartz/Novolac to detect CWA simulants. Talanta, 2011, 85, 1442-1447.	2.9	24
72	Planar Thermoelectric Microgenerators Based on Silicon Nanowires. Journal of Electronic Materials, 2011, 40, 851-855.	1.0	24

#	Article	IF	CITATIONS
73	Long-term variability and environmental preferences of calycophoran siphonophores in the Bay of Villefranche (north-western Mediterranean). Progress in Oceanography, 2012, 97-100, 152-163.	1.5	24
74	Study of integrated RF passive components performed using CMOS and Si micromachining technologies. Journal of Micromechanics and Microengineering, 1997, 7, 162-164.	1.5	23
75	Definition of high aspect ratio glass columns. Sensors and Actuators A: Physical, 2003, 105, 305-310.	2.0	23
76	Improvement of the gas sensor response via silicon μ-preconcentrator. Sensors and Actuators B: Chemical, 2007, 127, 288-294.	4.0	23
77	UV damage endonuclease employs a novel dual-dinucleotide flipping mechanism to recognize different DNA lesions. Nucleic Acids Research, 2013, 41, 1363-1371.	6.5	23
78	Localized aerosol-assisted CVD of nanomaterials for the fabrication of monolithic gas sensor microarrays. Sensors and Actuators B: Chemical, 2015, 216, 374-383.	4.0	23
79	Twin-mass accelerometer optimization to reduce the package stresses. Sensors and Actuators A: Physical, 2000, 80, 199-207.	2.0	22
80	A surface micromachining process for the development of a medium-infrared tuneable Fabry–Perot interferometer. Sensors and Actuators A: Physical, 2004, 113, 39-47.	2.0	22
81	Characterization of an array of Love-wave gas sensors developed using electrospinning technique to deposit nanofibers as sensitive layers. Talanta, 2014, 120, 408-412.	2.9	22
82	Improvement of the quality factor of RF integrated inductors by layout optimization. , 0, , .		21
83	Nanoparticle metal-oxide films for micro-hotplate-based gas sensor systems. IEEE Sensors Journal, 2005, 5, 798-809.	2.4	20
84	A compact optical multichannel system for ethylene monitoring. Microsystem Technologies, 2008, 14, 637-644.	1.2	19
85	Micro-machined WO3-based sensors with improved characteristics. Sensors and Actuators B: Chemical, 2009, 140, 356-362.	4.0	19
86	Residual Stress of Free-Standing Membranes of Yttria-Stabilized Zirconia for Micro Solid Oxide Fuel Cell Applications. Journal of Nanoscience and Nanotechnology, 2010, 10, 1327-1337.	0.9	19
87	Assessment of the final metrological characteristics of a MOEMS-based NDIR spectrometer through system modeling and data processing. IEEE Sensors Journal, 2003, 3, 587-594.	2.4	18
88	A Monolithic Interface Circuit for Gas Sensor Arrays: Control and Measurement. Analog Integrated Circuits and Signal Processing, 2004, 40, 175-184.	0.9	18
89	Exploration of the metrological performance of a gas detector based on an array of unspecific infrared filters. Sensors and Actuators B: Chemical, 2006, 116, 183-191.	4.0	18
90	Comparison of two types of acoustic biosensors to detect immunoreactions: Love-wave sensor working in dynamic mode and QCM working in static mode. Sensors and Actuators B: Chemical, 2013, 189, 123-129.	4.0	18

#	Article	IF	CITATIONS
91	Pulverisation method for active layer coating on microsystems. Sensors and Actuators B: Chemical, 2002, 84, 78-82.	4.0	17
92	Microfabrication of flexible gas sensing devices based on nanostructured semiconducting metal oxides. Sensors and Actuators A: Physical, 2014, 219, 88-93.	2.0	16
93	Fine-tuning of the resonant frequency using a hybrid coupler and fixed components in SAW oscillators for gas detection. Sensors and Actuators B: Chemical, 2004, 103, 139-144.	4.0	15
94	Qualitative and quantitative substance discrimination using a CMOS compatible non-specific NDIR microarray. Sensors and Actuators B: Chemical, 2009, 141, 396-403.	4.0	15
95	New approach for batch microfabrication of silicon-based micro fuel cells. Microsystem Technologies, 2014, 20, 341-348.	1.2	15
96	Application of nickel electroless plating to the fabrication of low-cost backside contact ISFETs. Sensors and Actuators B: Chemical, 1995, 27, 336-340.	4.0	14
97	AFM thermal imaging as an optimization tool for a bulk micromachined thermopile. Sensors and Actuators A: Physical, 2004, 115, 440-446.	2.0	14
98	Finite-element analysis of a miniaturized ion mobility spectrometer for security applications. Sensors and Actuators B: Chemical, 2012, 170, 13-20.	4.0	14
99	Cerium Oxide-Tungsten Oxide Core-Shell Nanowire-Based Microsensors Sensitive to Acetone. Biosensors, 2018, 8, 116.	2.3	14
100	Feasibility of a flip-chip approach to integrate an IR filter and an IR detector in a future gas detection cell. Microsystem Technologies, 2004, 10, 382-386.	1.2	13
101	Characterization of thermal conductivity in thin film multilayered membranes. Thin Solid Films, 2005, 484, 328-333.	0.8	13
102	Accurate extraction of contact resistivity on Kelvin D-resistor structures using universal curves from simulation. IEEE Transactions on Electron Devices, 1993, 40, 944-950.	1.6	12
103	Electrical characterization of the aging of sealing materials for ISFET chemical sensors. Sensors and Actuators B: Chemical, 1995, 24, 206-210.	4.0	12
104	Propagation of acoustic waves in metal oxide nanoparticle layers with catalytic metals for selective gas detection. Sensors and Actuators B: Chemical, 2015, 217, 65-71.	4.0	12
105	Influence of the degradation on the surface states and electrical characteristics of EOS structures. Surface Science, 1991, 251-252, 364-368.	0.8	11
106	Use of boron heavily doped silicon slabs for gas sensors based on free-standing membranes. Sensors and Actuators B: Chemical, 2008, 130, 538-545.	4.0	11
107	Catalyst-Free Vapor-Phase Method for Direct Integration of Gas Sensing Nanostructures with Polymeric Transducing Platforms. Journal of Nanomaterials, 2014, 2014, 1-9.	1.5	11
108	Intracellular stability of the gene encoding influenza virus haemagglutinin. Virology, 1990, 175, 385-390.	1.1	10

#	Article	IF	CITATIONS
109	Mirror electrostatic actuation of a medium-infrared tuneable Fabry-Perot interferometer based on a surface micromachining process. Sensors and Actuators A: Physical, 2005, 123-124, 584-589.	2.0	10
110	Mechanical characterization of thermal flow sensors membranes. Sensors and Actuators A: Physical, 2006, 125, 260-266.	2.0	10
111	Hybrid polymer electrolyte membrane for silicon-based micro fuel cells integration. Journal of Micromechanics and Microengineering, 2009, 19, 065006.	1.5	10
112	ZnO Structures with Surface Nanoscale Interfaces Formed by Au, Fe2O3, or Cu2O Modifier Nanoparticles: Characterization and Gas Sensing Properties. Sensors, 2021, 21, 4509.	2.1	10
113	A technology for the monolithic fabrication of a pressure sensor and related circuitry. Sensors and Actuators A: Physical, 1995, 46, 133-136.	2.0	9
114	Magnetic-field sensor based on a thin-film SOI transistor. Sensors and Actuators A: Physical, 1998, 67, 96-101.	2.0	9
115	A CMOS monolithically integrated gas sensor array with electronics for temperature control and signal interfacing. , 0, , .		9
116	<title>A highly sensitive IR-optical sensor for ethylene-monitoring</title> ., 2005, 5836, 452.		9
117	Multisensor chip for gas concentration monitoring in a flowing gas mixture. Sensors and Actuators B: Chemical, 2005, 107, 688-694.	4.0	8
118	A MEMS-based thermal infrared emitter for an integrated NDIR spectrometer. Microsystem Technologies, 2012, 18, 1147-1154.	1.2	8
119	Real-Time Characterization of Electrospun PVP Nanofibers as Sensitive Layer of a Surface Acoustic Wave Device for Gas Detection. Journal of Nanomaterials, 2014, 2014, 1-8.	1.5	8
120	On-line determination of the degradation of ISFET chemical sensors. Sensors and Actuators B: Chemical, 1993, 15, 218-222.	4.0	7
121	Influence of the internal gas flow distribution on the efficiency of a μ-preconcentrator. Sensors and Actuators B: Chemical, 2008, 135, 52-56.	4.0	7
122	Nosocomial Neonatal Listeria monocytogenes Transmission by Stethoscope. Pediatric Infectious Disease Journal, 2015, 34, 1042-1043.	1.1	7
123	Aerosol-assisted Chemical Vapor Deposition of Metal Oxide Structures: Zinc Oxide Rods. Journal of Visualized Experiments, 2017, , .	0.2	7
124	Electron beam lithography for contacting single nanowires on non-flat suspended substrates. Sensors and Actuators B: Chemical, 2019, 286, 616-623.	4.0	7
125	Application of Micro and Nanotechnologies to Food Safety and Quality Monitoring. Measurement and Control, 2007, 40, 116-119.	0.9	6

126 A high sensitivity silicon microcantilever based mass sensor. , 2008, , .

#	Article	IF	CITATIONS
127	Gas Nanosensors Based on Individual Indium Oxide Nanostructures. Procedia Engineering, 2015, 120, 795-798.	1.2	6
128	Improvement of pressure-sensor performance and process robustness through reinforcement of the membrane edges. Sensors and Actuators A: Physical, 1998, 67, 138-141.	2.0	5
129	Manufacturing and packaging of sensors for their integration in a vertical MCM microsystem for biomedical applications. Journal of Microelectromechanical Systems, 2001, 10, 569-579.	1.7	5
130	Optimized design of a SAW sensor array for chemical warfare agents simulants detection. Procedia Chemistry, 2009, 1, 232-235.	0.7	5
131	A new test structure to characterize the latchup effect. , 1990, , .		4
132	Improvement of the triangular MOS transistor for misalignment measurement. , 0, , .		4
133	Monolithic micro fuel cells as integrated power sources in MEMS. , 2009, , .		4
134	Locally Grown SnO 2 NWs as Low Power Ammonia Sensor. Procedia Engineering, 2015, 120, 215-219.	1.2	4
135	Modelization and fabrication of ISFET based sensors. Microelectronic Engineering, 1991, 15, 423-426.	1.1	3
136	Extraction of contact resistivity on Kelvin L-resistor structures. IEEE Transactions on Electron Devices, 1994, 41, 1073-1074.	1.6	3
137	CMOS integrated pressure sensor optimization using electrical network simulator-FEM tool coupling. Journal of Micromechanics and Microengineering, 1999, 9, 109-112.	1.5	3
138	<title>Low-cost thermal flow sensor for home-appliances applications</title> ., 2002, , .		3
139	Thermal and mechanical simulation of bulk resonators. , 0, , .		3
140	Thermal AFM: a thermopile case study. Ultramicroscopy, 2004, 101, 153-159.	0.8	3
141	A glass/silicon technology for low-power robust gas sensors. IEEE Sensors Journal, 2004, 4, 195-206.	2.4	3
142	Micro-cantilevers for gas sensing. , 0, , .		3
143	Modelling a P-FAIMS with multiphysics FEM. Journal of Mathematical Chemistry, 2012, 50, 359-373.	0.7	3
144	Latch-up characterization using novel test structures and instruments. IEEE Transactions on Semiconductor Manufacturing, 1991, 4, 199-205.	1.4	2

#	Article	IF	CITATIONS
145	Nanomodification of silicon (100) surface with scanning tunnelling microscopy using polysilicon on silicon structure. Materials Science and Technology, 1995, 11, 85-89.	0.8	2
146	Evaluation of sensitive materials for integrated thermal flow sensors. , 0, , .		2
147	Optimized multi-frequency temperature modulation of micro-hotplate gas sensors. , 0, , .		2
148	Microsystems for the agrofood field. Journal of Physics: Conference Series, 2005, 10, 267-272.	0.3	2
149	Thermal conductivity determination of micromachined membranes. , 0, , .		2
150	Micro and nanotechnologies for the development of an integrated chromatographic system. , 2007, , .		2
151	Fabrication and characterization of yttria-stabilized zirconia membranes for micro solid oxide fuel cells. , 2009, , .		2
152	Modeling vapor detection in a micro ion mobility spectrometer for security applications. Procedia Engineering, 2010, 5, 1236-1239.	1.2	2
153	Discrimination and classification of chemical warfare agent simulants using a Love-wave sensor array. Procedia Engineering, 2011, 25, 23-26.	1.2	2
154	Ferric Oxide Nanoparticle-functionalized Tungsten Oxide Nanoneedles and their Gas Sensing Properties. Procedia Engineering, 2015, 120, 443-446.	1.2	2
155	Low-cost Fabrication of Zero-power Metal Oxide Nanowire Gas Sensors: Trends and Challenges. Procedia Engineering, 2015, 120, 488-491.	1.2	2
156	Gas Microsensors Based on Cerium Oxide Modified Tungsten Oxide Nanowires. , 2018, , .		2
157	Monitoring perishable food. , 2020, , 289-314.		2
158	Nitrogen Dioxide Selective Sensor for Humid Environments Based on Octahedral Indium Oxide. Frontiers in Sensors, 2021, 2, .	1.7	2
159	Positive photoresist stripping by plasma barrel. Vacuum, 1989, 39, 757-759.	1.6	1
160	Measurement of lateral diffusion on technologies with polysilicon doping source with misalignment correction. , 0, , .		1
161	An easy technique for determining diffusion and generation-recombination components of the current of pn junctions for better modelling. , 0, , .		1
162	<title>Low-power micromachined structures for gas sensors with improved robustness</title> . , 2000, , .		1

#	Article	IF	CITATIONS
163	<title>Thermal-induced stress in dielectric membranes suitable for micromechanized gas sensors</title> . , 2001, 4408, 81.		1
164	MLS based temperature modulation of micro-hotplates. , 0, , .		1
165	Semiconductor gas sensor compatibility with CMOS technologies. , 2003, , .		1
166	Optical simulation of a MOEMS based tuneable Fabry-Perot interferometer. , 0, , .		1
167	<title>3D deformation analysis of flow and gas sensors membranes for reliability assessment</title> . , 2005, , .		1
168	Influence of the doping material on the benzene detection. , 2006, , .		1
169	Performance and Design Issues of a Silicon Microfabricated Fuel Cell. , 2007, , .		1
170	Dimension-Scaling of Microcantilevers Resonators. , 2007, , .		1
171	YSZ Free-standing Membranes for Silicon-based Micro SOFCs. ECS Transactions, 2009, 25, 931-938.	0.3	1
172	Saw Sensor Array for Chemical Warfare Agent Simulants. , 2009, , .		1
173	COMSOL Simulation of acetone ions in Planar Ion Mobility Spectrometer. , 2009, , .		1
174	A planar micro-concentrator/injector for low power consumption microchromatographic analysis of benzene and 1,3 butadiene. Microsystem Technologies, 2012, 18, 489-495.	1.2	1
175	Localized and In-Situ Integration of Different Nanowire Materials for Electronic Nose Applications. Proceedings (mdpi), 2018, 2, 957.	0.2	1
176	A moveable shielding box adaptable to commercial automatic wafer probers. , 0, , .		0
177	<title>Doping and structural properties for the phosphorous-doped polysilicon layers used for micromechanical applications</title> . , 1999, , .		0
178	Characterisation of surface micromachined beams with floating gate transistor. , 0, , .		0
179	Integrated micromachined gas multisensor for domestic boilers. , 0, , .		0
180	A mixed-mode interface circuit for gas sensor control and measure. , 0, , .		0

#	Article	IF	CITATIONS
181	Feasibility of a flip chip approach to integrate an IR filter and an IR detector in a future gas detection cell. , 0, , .		Ο
182	Compatibility of gas and flow sensor technology fabrication. , 2003, , .		0
183	FEM simulations to estimate the polymer thickness deposited over mechanical resonators. , 0, , .		0
184	Mechanical characterisation of micro-resonator structures. , 0, , .		0
185	FEM Simulation and Characterization of Microcantilevers Resonators. , 2006, , .		0
186	Towards a Microtechnology based 4-channel infrared detector unit for a miniaturised NDIR system. , 2006, , .		0
187	Fabrication and characterization of a passive silicon-based direct methanol fuel cell. , 2007, , .		0
188	A Silicon-Based Direct Methanol Micro Fuel Cell. , 2007, , .		0
189	Spiral μ-preconcentrator for gas sensor detection in the ppb range. Proceedings of IEEE Sensors, 2007, , .	1.0	0
190	Silicon μ-preconcentrator for improved gas detection. , 2007, , .		0
191	Development and Optimization of Pre-Concentrator for Enhanced Benzene Detection. , 2007, , .		Ο
192	Methods and Techniques for the Fabrication of Gas Sensing Devices from Nanowires. Procedia Engineering, 2011, 25, 1409-1412.	1.2	0
193	A MEMS-based thermal infrared emitter for an integrated NDIR spectrometer. , 2011, , .		Ο
194	Comparative Evaluation between Two Acoustic Immunosensors: Love-wave and QCM, and Systems of Measurement: Dynamic and Static. Procedia Engineering, 2012, 47, 174-177.	1.2	0
195	Contact end resistance test structure applied for nanocontact measurements. Microelectronic Engineering, 2012, 99, 18-22.	1.1	0
196	Sensors and Micro and Nano Technologies for the Food Sector. , 2013, , .		0
197	Microfluidics applied to Love-wave devices to detect biological warfare agents in dynamic mode. , 2013, , .		0
198	Flexible gas sensing devices with directly grown tungsten oxide nanoneedles via AACVD. , 2015, , .		0

#	Article	IF	CITATIONS
199	Liquid characterization by means of Love-wave device combined with microfluidic platform. , 2015, , .		0
200	VOC-sensitive structures with nanoscale heterojunctions based on WO3-x nanoneedles and Fe2O3 nanoparticles. Monatshefte Für Chemie, 2017, 148, 1921-1927.	0.9	0
201	Different Nanowire Materials Localized Growth and In-Situ Integration for Electronic Nose Applications. , 2018, , .		0
202	ZnO Nanorods and Their Modification with Au Nanoparticles for UV-light Activated Gas Sensing. , 2021, , .		0