Elvira Brattico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7504784/publications.pdf

Version: 2024-02-01

66343 88630 5,953 124 42 70 citations h-index g-index papers 134 134 134 3933 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comparing the aesthetic experience of classic–romantic and contemporary classical music: An interview study. Psychology of Music, 2023, 51, 274-294.	1.6	3
2	The effect of mental practice on music memorization. Psychology of Music, 2022, 50, 230-244.	1.6	9
3	Empathy but not musicality is at the root of musical reward: A behavioral study with adults and children. Psychology of Music, 2022, 50, 2001-2020.	1.6	2
4	An ALE meta-analytic review of musical expertise. Scientific Reports, 2022, 12, .	3.3	23
5	Transient brain networks underlying interpersonal strategies during synchronized action. Social Cognitive and Affective Neuroscience, 2021, 16, 19-30.	3.0	22
6	Intelligence and Music: Lower Intelligent Quotient Is Associated With Higher Use of Music for Experiencing Strong Sensations. Empirical Studies of the Arts, 2021, 39, 194-215.	1.7	8
7	Putting Cells in Motion: Advantages of Endogenous Boosting of BDNF Production. Cells, 2021, 10, 183.	4.1	12
8	Signaling games and music as a credible signal. Behavioral and Brain Sciences, 2021, 44, e107.	0.7	2
9	Extracting human cortical responses to sound onsets and acoustic feature changes in real music, and their relation to event rate. Brain Research, 2021, 1754, 147248.	2.2	17
10	Musicianship and melodic predictability enhance neural gain in auditory cortex during pitch deviance detection. Human Brain Mapping, 2021, 42, 5595-5608.	3.6	11
11	Prediction under uncertainty: Dissociating sensory from cognitive expectations in highly uncertain musical contexts. Brain Research, 2021, 1773, 147664.	2.2	13
12	Music with Concurrent Saliences of Musical Features Elicits Stronger Brain Responses. Applied Sciences (Switzerland), 2021, 11, 9158.	2.5	2
13	Neural Correlates of Music Listening: Does the Music Matter?. Brain Sciences, 2021, 11, 1553.	2.3	16
14	The chronnectome of musical beat. Neurolmage, 2020, 216, 116191.	4.2	30
15	Inter-subject Similarity of Brain Activity in Expert Musicians After Multimodal Learning: A Behavioral and Neuroimaging Study on Learning to Play a Piano Sonata. Neuroscience, 2020, 441, 102-116.	2.3	19
16	Musical prediction error responses similarly reduced by predictive uncertainty in musicians and nonâ€musicians. European Journal of Neuroscience, 2020, 51, 2250-2269.	2.6	25
17	The CI MuMuFe – A New MMN Paradigm for Measuring Music Discrimination in Electric Hearing. Frontiers in Neuroscience, 2020, 14, 2.	2.8	10
18	Applying stochastic spike train theory for high-accuracy human MEG/EEG. Journal of Neuroscience Methods, 2020, 340, 108743.	2.5	6

#	Article	IF	CITATIONS
19	Differential Effects of Trait Empathy on Functional Network Centrality. Lecture Notes in Computer Science, 2020, , 107-117.	1.3	3
20	On the Association Between Musical Training, Intelligence and Executive Functions in Adulthood. Frontiers in Psychology, 2019, 10, 1704.	2.1	31
21	Aesthetic empowerment through music. Musicae Scientiae, 2019, 23, 285-303.	2.9	15
22	Reduced prediction error responses in high-as compared to low-uncertainty musical contexts. Cortex, 2019, 120, 181-200.	2.4	42
23	Functional connectivity of music-induced analgesia in fibromyalgia. Scientific Reports, 2019, 9, 15486.	3. 3	20
24	Fractionating auditory priors: A neural dissociation between active and passive experience of musical sounds. PLoS ONE, 2019, 14, e0216499.	2.5	17
25	Weighting of neural prediction error by rhythmic complexity: A predictive coding account using mismatch negativity. European Journal of Neuroscience, 2019, 49, 1597-1609.	2.6	72
26	Influence of Musical Expertise on the processing of Musical Features in a Naturalistic Setting. , 2019, , .		5
27	Functional connectivity in human auditory networks and the origins of variation in the transmission of musical systems. ELife, 2019, 8, .	6.0	17
28	Dynamic Functional Connectivity in the Musical Brain. Lecture Notes in Computer Science, 2019, , 82-91.	1.3	2
29	Decoding Musical Training from Dynamic Processing of Musical Features in the Brain. Scientific Reports, 2018, 8, 708.	3.3	24
30			
	Neuroanatomical substrate of noise sensitivity. NeuroImage, 2018, 167, 309-315.	4.2	24
31	Neuroanatomical substrate of noise sensitivity. NeuroImage, 2018, 167, 309-315. Applying Acoustical and Musicological Analysis to Detect Brain Responses to Realistic Music: A Case Study. Applied Sciences (Switzerland), 2018, 8, 716.	2.5	24
31	Applying Acoustical and Musicological Analysis to Detect Brain Responses to Realistic Music: A Case		
	Applying Acoustical and Musicological Analysis to Detect Brain Responses to Realistic Music: A Case Study. Applied Sciences (Switzerland), 2018, 8, 716. Regions of Interest as nodes of dynamic functional brain networks. Network Neuroscience, 2018, 2,	2.5	8
32	Applying Acoustical and Musicological Analysis to Detect Brain Responses to Realistic Music: A Case Study. Applied Sciences (Switzerland), 2018, 8, 716. Regions of Interest as nodes of dynamic functional brain networks. Network Neuroscience, 2018, 2, 513-535.	2.5	12
32	Applying Acoustical and Musicological Analysis to Detect Brain Responses to Realistic Music: A Case Study. Applied Sciences (Switzerland), 2018, 8, 716. Regions of Interest as nodes of dynamic functional brain networks. Network Neuroscience, 2018, 2, 513-535. Automatic Processing of Musical Sounds in the Human Brain. Springer Handbooks, 2018, , 441-452.	2.5 2.6 0.6	8 12 0

#	Article	IF	Citations
37	Musical training predicts cerebello-hippocampal coupling during music listening Psychomusicology: Music, Mind and Brain, 2018, 28, 152-163.	0.3	8
38	The forgotten artist: Why to consider intentions and interaction in a model of aesthetic experience. Physics of Life Reviews, 2017, 21, 128-130.	2.8	6
39	Data-Driven Analysis of Collections of Big Datasets by the Bi-CoPaM Method Yields Field-Specific Novel Insights. Lecture Notes in Electrical Engineering, 2017, , 25-53.	0.4	1
40	Connectivity patterns during music listening: Evidence for actionâ€based processing in musicians. Human Brain Mapping, 2017, 38, 2955-2970.	3.6	80
41	Towards Tunable Consensus Clustering for Studying Functional Brain Connectivity During Affective Processing. International Journal of Neural Systems, 2017, 27, 1650042.	5.2	25
42	Exploration of distance metrics in consensus clustering analysis of FMRI data. , 2017, , .		0
43	The urge to judge: Why the judgmental attitude has anything to do with the aesthetic enjoyment of negative emotions. Behavioral and Brain Sciences, 2017, 40, e353.	0.7	6
44	Constituents of Music and Visual-Art Related Pleasure – A Critical Integrative Literature Review. Frontiers in Psychology, 2017, 8, 1218.	2.1	13
45	Coupling of Action-Perception Brain Networks during Musical Pulse Processing: Evidence from Region-of-Interest-Based Independent Component Analysis. Frontiers in Human Neuroscience, 2017, 11, 230.	2.0	25
46	Effect of Explicit Evaluation on Neural Connectivity Related to Listening to Unfamiliar Music. Frontiers in Human Neuroscience, 2017, 11, 611.	2.0	22
47	Global Sensory Qualities and Aesthetic Experience in Music. Frontiers in Neuroscience, 2017, 11, 159.	2.8	27
48	Comparing the Performance of Popular MEG/EEG Artifact Correction Methods in an Evoked-Response Study. Computational Intelligence and Neuroscience, 2016, 2016, 1-10.	1.7	41
49	Hidden sources of joy, fear, and sadness: Explicit versus implicit neural processing of musical emotions. Neuropsychologia, 2016, 89, 393-402.	1.6	78
50	A window into the brain mechanisms associated with noise sensitivity. Scientific Reports, 2016, 6, 39236.	3.3	61
51	Comprehensive auditory discrimination profiles recorded with a fast parametric musical multi-feature mismatch negativity paradigm. Clinical Neurophysiology, 2016, 127, 2065-2077.	1.5	25
52	The reliability of continuous brain responses during naturalistic listening to music. NeuroImage, 2016, 124, 224-231.	4.2	51
53	Scalable clustering based on enhanced-SMART for large-scale FMRI datasets. , 2015, , .		1
54	Musical expertise modulates functional connectivity of limbic regions during continuous music listening Psychomusicology: Music, Mind and Brain, 2015, 25, 443-454.	0.3	42

#	Article	IF	CITATIONS
55	Brain Responses to Musical Feature Changes in Adolescent Cochlear Implant Users. Frontiers in Human Neuroscience, 2015, 9, 7.	2.0	32
56	Maladaptive and adaptive emotion regulation through music: a behavioral and neuroimaging study of males and females. Frontiers in Human Neuroscience, 2015, 9, 466.	2.0	92
57	Music reduces pain and increases resting state fMRI BOLD signal amplitude in the left angular gyrus in fibromyalgia patients. Frontiers in Psychology, 2015, 6, 1051.	2.1	60
58	The Power of Music on Alzheimer $\tilde{A}f\hat{A}^{\dagger}$, $\hat{A}\in\tilde{A}$, \hat{A}^{\dagger} Disease and the Need to Understand the Underlying Molecular Mechanisms. , 2015, 05, .		7
59	Neuroplasticity beyond Sounds: Neural Adaptations Following Long-Term Musical Aesthetic Experiences. Brain Sciences, 2015, 5, 69-91.	2.3	91
60	Clustering consistency in neuroimaging data analysis., 2015,,.		3
61	It's Sad but I Like It: The Neural Dissociation Between Musical Emotions and Liking in Experts and Laypersons. Frontiers in Human Neuroscience, 2015, 9, 676.	2.0	105
62	Affective versus cognitive responses to musical chords: An ERP and behavioral study Psychomusicology: Music, Mind and Brain, 2015, 25, 423-434.	0.3	8
63	From pleasure to liking and back: Bottom-up and top-down neural routes to the aesthetic enjoyment of music., 2015,, 303-318.		23
64	Experience Drives Synchronization: The phase and Amplitude Dynamics of Neural Oscillations to Musical Chords Are Differentially Modulated by Musical Expertise. PLoS ONE, 2015, 10, e0134211.	2.5	14
65	Action in Perception: Prominent Visuo-Motor Functional Symmetry in Musicians during Music Listening. PLoS ONE, 2015, 10, e0138238.	2.5	44
66	The association of noise sensitivity with music listening, training, and aptitude. Noise and Health, 2015, 17, 350.	0.5	21
67	Implicit Processing of Visual Emotions Is Affected by Sound-Induced Affective States and Individual Affective Traits. PLoS ONE, 2014, 9, e103278.	2.5	22
68	Music reduces pain and increases functional mobility in fibromyalgia. Frontiers in Psychology, 2014, 5, 90.	2.1	68
69	Residual Neural Processing of Musical Sound Features in Adult Cochlear Implant Users. Frontiers in Human Neuroscience, 2014, 8, 181.	2.0	31
70	Assimilation of L2 vowels to L1 phonemes governs L2 learning in adulthood: a behavioral and ERP study. Frontiers in Human Neuroscience, 2014, 8, 279.	2.0	22
71	Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding. Frontiers in Human Neuroscience, 2014, 8, 496.	2.0	45
72	Ready for action: a role for the human midbrain in responding to infant vocalizations. Social Cognitive and Affective Neuroscience, 2014, 9, 977-984.	3.0	32

#	Article	IF	CITATIONS
73	Dynamics of brain activity underlying working memory for music in a naturalistic condition. Cortex, 2014, 57, 254-269.	2.4	59
74	Key issues in decomposing fMRI during naturalistic and continuous music experience with independent component analysis. Journal of Neuroscience Methods, 2014, 223, 74-84.	2.5	28
75	Capturing the musical brain with Lasso: Dynamic decoding of musical features from fMRI data. Neurolmage, 2014, 88, 170-180.	4.2	75
76	From Vivaldi to Beatles and back: Predicting lateralized brain responses to music. Neurolmage, 2013, 83, 627-636.	4.2	74
77	†I love Rock †n†Roll†M†Music genre preference modulates brain responses to music. Biological Psychology, 2013, 92, 142-151.	2.2	27
78	The neuroaesthetics of music Psychology of Aesthetics, Creativity, and the Arts, 2013, 7, 48-61.	1.3	163
79	Affective reactions to musical stimuli reflect emotional use of music in everyday life. Musicae Scientiae, 2013, 17, 27-39.	2.9	36
80	Modulated neural processing of Western harmony in folk musicians. Psychophysiology, 2013, 50, 653-663.	2.4	25
81	Diffusion map for clustering fMRI spatial maps extracted by independent component analysis. , 2013, , .		5
82	Semi-blind independent component analysis of functional MRI elicited by continuous listening to music. , 2013 , , .		2
83	Toward a Neural Chronometry for the Aesthetic Experience of Music. Frontiers in Psychology, 2013, 4, 206.	2.1	131
84	Pleasurable music affects reinforcement learning according to the listener. Frontiers in Psychology, 2013, 4, 541.	2.1	37
85	Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. Neurolmage, 2012, 59, 3677-3689.	4.2	279
86	The development of the aesthetic experience of music: Preference, emotions, and beauty. Musicae Scientiae, 2012, 16, 372-391.	2.9	35
87	Superior Analgesic Effect of an Active Distraction versus Pleasant Unfamiliar Sounds and Music: The Influence of Emotion and Cognitive Style. PLoS ONE, 2012, 7, e29397.	2.5	54
88	Practiced musical style shapes auditory skills. Annals of the New York Academy of Sciences, 2012, 1252, 139-146.	3.8	59
89	The sound of music: Differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm. Neuropsychologia, 2012, 50, 1432-1443.	1.6	121
90	New fast mismatch negativity paradigm for determining the neural prerequisites for musical ability. Cortex, 2011, 47, 1091-1098.	2.4	84

#	Article	IF	Citations
91	A Functional MRI Study of Happy and Sad Emotions in Music with and without Lyrics. Frontiers in Psychology, 2011, 2, 308.	2.1	174
92	Music and Emotions in the Brain: Familiarity Matters. PLoS ONE, 2011, 6, e27241.	2.5	306
93	Distinct neural responses to chord violations: A multiple source analysis study. Brain Research, 2011, 1389, 103-114.	2.2	59
94	Cognitive and Motor Loops of the Human Cerebro-cerebellar System. Journal of Cognitive Neuroscience, 2010, 22, 2663-2676.	2.3	228
95	Aesthetic judgments of music in experts and laypersons â€" An ERP study. International Journal of Psychophysiology, 2010, 76, 40-51.	1.0	108
96	Cognitive vs. affective listening modes and judgments of music – An ERP study. Biological Psychology, 2010, 85, 393-409.	2.2	111
97	Cognitive Control in Auditory Working Memory Is Enhanced in Musicians. PLoS ONE, 2010, 5, e11120.	2.5	165
98	Aesthetic responses to music: A questionnaire study. Musicae Scientiae, 2009, 13, 183-206.	2.9	63
99	The amusic brain: in tune, out of key, and unaware. Brain, 2009, 132, 1277-1286.	7.6	182
100	Subjective Appraisal of Music. Annals of the New York Academy of Sciences, 2009, 1169, 308-317.	3.8	43
101	Electrophysiological Correlates of Aesthetic Music Processing. Annals of the New York Academy of Sciences, 2009, 1169, 355-358.	3.8	11
102	The origins of the aesthetic enjoyment of music â€" A review of the literature. Musicae Scientiae, 2009, 13, 15-39.	2.9	39
103	Detrimental noise effects on brain's speech functions. Biological Psychology, 2009, 81, 135-143.	2.2	59
104	Neural Discrimination of Nonprototypical Chords in Music Experts and Laymen: An MEG Study. Journal of Cognitive Neuroscience, 2009, 21, 2230-2244.	2.3	112
105	Cognitive and Emotional Modulation of Brain Default Operation. Journal of Cognitive Neuroscience, 2009, 21, 1065-1080.	2.3	47
106	Neural Representations Of The Hierarchical Scale Pitch Structure. Music Perception, 2007, 24, 281-296.	1.1	37
107	Representation of harmony rules in the human brain: Further evidence from event-related potentials. Brain Research, 2007, 1142, 169-177.	2.2	124
108	Musical scale properties are automatically processed in the human auditory cortex. Brain Research, 2006, 1117, 162-174.	2.2	162

#	Article	IF	CITATIONS
109	Separate Neural Processing of Timbre Dimensions in Auditory Sensory Memory. Journal of Cognitive Neuroscience, 2006, 18, 1959-1972.	2.3	103
110	Emotion Processing of Major, Minor, and Dissonant Chords: A Functional Magnetic Resonance Imaging Study. Annals of the New York Academy of Sciences, 2005, 1060, 450-453.	3.8	103
111	Preattentive representation of feature conjunctions for concurrent spatially distributed auditory objects. Cognitive Brain Research, 2005, 25, 169-179.	3.0	53
112	Abnormal electrical brain responses to pitch in congenital amusia. Annals of Neurology, 2005, 58, 478-482.	5.3	85
113	Long-term exposure to occupational noise alters the cortical organization of sound processing. Clinical Neurophysiology, 2005, 116, 190-203.	1.5	60
114	Orderly cortical representation of vowel categories presented by multiple exemplars. Cognitive Brain Research, 2004, 21, 342-350.	3.0	59
115	Electrical Brain Responses to Descriptive versus Evaluative Judgments of Music. Annals of the New York Academy of Sciences, 2003, 999, 155-157.	3.8	11
116	Cortical Correlates of Acquired Deafness to Dissonance. Annals of the New York Academy of Sciences, 2003, 999, 158-160.	3.8	8
117	Effects of brief discrimination-training on the auditory N1 wave. NeuroReport, 2003, 14, 2489-2492.	1.2	39
118	Mismatch Negativity., 2003,, 343-VIII.		2
119	Simultaneous storage of two complex temporal sound patterns in auditory sensory memory. NeuroReport, 2002, 13, 1747-1751.	1.2	25
120	Abstract phoneme representations in the left temporal cortex: magnetic mismatch negativity study. NeuroReport, 2002, 13, 1813-1816.	1.2	110
121	Context Effects on Pitch Perception in Musicians and Nonmusicians: Evidence from Event-Related-Potential Recordings. Music Perception, 2001, 19, 199-222.	1.1	83
122	Music and Brain Plasticity: How Sounds Trigger Neurogenerative Adaptations. , 0, , .		18
123	The Empirical Aesthetics of Music. , 0, , 573-604.		3
124	Atonal Music as a Model for Investigating Exploratory Behavior. Frontiers in Neuroscience, 0, 16, .	2.8	4