List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7504784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Music and Emotions in the Brain: Familiarity Matters. PLoS ONE, 2011, 6, e27241.	2.5	306
2	Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. NeuroImage, 2012, 59, 3677-3689.	4.2	279
3	Cognitive and Motor Loops of the Human Cerebro-cerebellar System. Journal of Cognitive Neuroscience, 2010, 22, 2663-2676.	2.3	228
4	The amusic brain: in tune, out of key, and unaware. Brain, 2009, 132, 1277-1286.	7.6	182
5	A Functional MRI Study of Happy and Sad Emotions in Music with and without Lyrics. Frontiers in Psychology, 2011, 2, 308.	2.1	174
6	Cognitive Control in Auditory Working Memory Is Enhanced in Musicians. PLoS ONE, 2010, 5, e11120.	2.5	165
7	The neuroaesthetics of music Psychology of Aesthetics, Creativity, and the Arts, 2013, 7, 48-61.	1.3	163
8	Musical scale properties are automatically processed in the human auditory cortex. Brain Research, 2006, 1117, 162-174.	2.2	162
9	Toward a Neural Chronometry for the Aesthetic Experience of Music. Frontiers in Psychology, 2013, 4, 206.	2.1	131
10	Representation of harmony rules in the human brain: Further evidence from event-related potentials. Brain Research, 2007, 1142, 169-177.	2.2	124
11	The sound of music: Differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm. Neuropsychologia, 2012, 50, 1432-1443.	1.6	121
12	Neural Discrimination of Nonprototypical Chords in Music Experts and Laymen: An MEG Study. Journal of Cognitive Neuroscience, 2009, 21, 2230-2244.	2.3	112
13	Cognitive vs. affective listening modes and judgments of music – An ERP study. Biological Psychology, 2010, 85, 393-409.	2.2	111
14	Abstract phoneme representations in the left temporal cortex: magnetic mismatch negativity study. NeuroReport, 2002, 13, 1813-1816.	1.2	110
15	Aesthetic judgments of music in experts and laypersons — An ERP study. International Journal of Psychophysiology, 2010, 76, 40-51.	1.0	108
16	It's Sad but I Like It: The Neural Dissociation Between Musical Emotions and Liking in Experts and Laypersons. Frontiers in Human Neuroscience, 2015, 9, 676.	2.0	105
17	Emotion Processing of Major, Minor, and Dissonant Chords: A Functional Magnetic Resonance Imaging Study. Annals of the New York Academy of Sciences, 2005, 1060, 450-453.	3.8	103
18	Separate Neural Processing of Timbre Dimensions in Auditory Sensory Memory. Journal of Cognitive Neuroscience, 2006, 18, 1959-1972.	2.3	103

#	Article	IF	CITATIONS
19	Maladaptive and adaptive emotion regulation through music: a behavioral and neuroimaging study of males and females. Frontiers in Human Neuroscience, 2015, 9, 466.	2.0	92
20	Neuroplasticity beyond Sounds: Neural Adaptations Following Long-Term Musical Aesthetic Experiences. Brain Sciences, 2015, 5, 69-91.	2.3	91
21	Abnormal electrical brain responses to pitch in congenital amusia. Annals of Neurology, 2005, 58, 478-482.	5.3	85
22	New fast mismatch negativity paradigm for determining the neural prerequisites for musical ability. Cortex, 2011, 47, 1091-1098.	2.4	84
23	Context Effects on Pitch Perception in Musicians and Nonmusicians: Evidence from Event-Related-Potential Recordings. Music Perception, 2001, 19, 199-222.	1.1	83
24	Connectivity patterns during music listening: Evidence for actionâ€based processing in musicians. Human Brain Mapping, 2017, 38, 2955-2970.	3.6	80
25	Hidden sources of joy, fear, and sadness: Explicit versus implicit neural processing of musical emotions. Neuropsychologia, 2016, 89, 393-402.	1.6	78
26	Capturing the musical brain with Lasso: Dynamic decoding of musical features from fMRI data. NeuroImage, 2014, 88, 170-180.	4.2	75
27	From Vivaldi to Beatles and back: Predicting lateralized brain responses to music. NeuroImage, 2013, 83, 627-636.	4.2	74
28	Weighting of neural prediction error by rhythmic complexity: A predictive coding account using mismatch negativity. European Journal of Neuroscience, 2019, 49, 1597-1609.	2.6	72
29	Music reduces pain and increases functional mobility in fibromyalgia. Frontiers in Psychology, 2014, 5, 90.	2.1	68
30	Aesthetic responses to music: A questionnaire study. Musicae Scientiae, 2009, 13, 183-206.	2.9	63
31	A window into the brain mechanisms associated with noise sensitivity. Scientific Reports, 2016, 6, 39236.	3.3	61
32	Long-term exposure to occupational noise alters the cortical organization of sound processing. Clinical Neurophysiology, 2005, 116, 190-203.	1.5	60
33	Music reduces pain and increases resting state fMRI BOLD signal amplitude in the left angular gyrus in fibromyalgia patients. Frontiers in Psychology, 2015, 6, 1051.	2.1	60
34	Orderly cortical representation of vowel categories presented by multiple exemplars. Cognitive Brain Research, 2004, 21, 342-350.	3.0	59
35	Detrimental noise effects on brain's speech functions. Biological Psychology, 2009, 81, 135-143.	2.2	59
36	Distinct neural responses to chord violations: A multiple source analysis study. Brain Research, 2011, 1389, 103-114.	2.2	59

#	Article	IF	CITATIONS
37	Practiced musical style shapes auditory skills. Annals of the New York Academy of Sciences, 2012, 1252, 139-146.	3.8	59
38	Dynamics of brain activity underlying working memory for music in a naturalistic condition. Cortex, 2014, 57, 254-269.	2.4	59
39	Superior Analgesic Effect of an Active Distraction versus Pleasant Unfamiliar Sounds and Music: The Influence of Emotion and Cognitive Style. PLoS ONE, 2012, 7, e29397.	2.5	54
40	Preattentive representation of feature conjunctions for concurrent spatially distributed auditory objects. Cognitive Brain Research, 2005, 25, 169-179.	3.0	53
41	The reliability of continuous brain responses during naturalistic listening to music. NeuroImage, 2016, 124, 224-231.	4.2	51
42	Cognitive and Emotional Modulation of Brain Default Operation. Journal of Cognitive Neuroscience, 2009, 21, 1065-1080.	2.3	47
43	Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding. Frontiers in Human Neuroscience, 2014, 8, 496.	2.0	45
44	Action in Perception: Prominent Visuo-Motor Functional Symmetry in Musicians during Music Listening. PLoS ONE, 2015, 10, e0138238.	2.5	44
45	Subjective Appraisal of Music. Annals of the New York Academy of Sciences, 2009, 1169, 308-317.	3.8	43
46	Musical expertise modulates functional connectivity of limbic regions during continuous music listening Psychomusicology: Music, Mind and Brain, 2015, 25, 443-454.	0.3	42
47	Reduced prediction error responses in high-as compared to low-uncertainty musical contexts. Cortex, 2019, 120, 181-200.	2.4	42
48	Comparing the Performance of Popular MEG/EEG Artifact Correction Methods in an Evoked-Response Study. Computational Intelligence and Neuroscience, 2016, 2016, 1-10.	1.7	41
49	Brain Connectivity Networks and the Aesthetic Experience of Music. Brain Sciences, 2018, 8, 107.	2.3	41
50	Atonal Music: Can Uncertainty Lead to Pleasure?. Frontiers in Neuroscience, 2018, 12, 979.	2.8	40
51	Effects of brief discrimination-training on the auditory N1 wave. NeuroReport, 2003, 14, 2489-2492.	1.2	39
52	The origins of the aesthetic enjoyment of music — A review of the literature. Musicae Scientiae, 2009, 13, 15-39.	2.9	39
53	Neural Representations Of The Hierarchical Scale Pitch Structure. Music Perception, 2007, 24, 281-296.	1.1	37
54	Pleasurable music affects reinforcement learning according to the listener. Frontiers in Psychology, 2013, 4, 541.	2.1	37

#	Article	IF	CITATIONS
55	Affective reactions to musical stimuli reflect emotional use of music in everyday life. Musicae Scientiae, 2013, 17, 27-39.	2.9	36
56	The development of the aesthetic experience of music: Preference, emotions, and beauty. Musicae Scientiae, 2012, 16, 372-391.	2.9	35
57	Ready for action: a role for the human midbrain in responding to infant vocalizations. Social Cognitive and Affective Neuroscience, 2014, 9, 977-984.	3.0	32
58	Brain Responses to Musical Feature Changes in Adolescent Cochlear Implant Users. Frontiers in Human Neuroscience, 2015, 9, 7.	2.0	32
59	Residual Neural Processing of Musical Sound Features in Adult Cochlear Implant Users. Frontiers in Human Neuroscience, 2014, 8, 181.	2.0	31
60	On the Association Between Musical Training, Intelligence and Executive Functions in Adulthood. Frontiers in Psychology, 2019, 10, 1704.	2.1	31
61	The chronnectome of musical beat. NeuroImage, 2020, 216, 116191.	4.2	30
62	Key issues in decomposing fMRI during naturalistic and continuous music experience with independent component analysis. Journal of Neuroscience Methods, 2014, 223, 74-84.	2.5	28
63	â€ĩl love Rock â€~n' Roll'—Music genre preference modulates brain responses to music. Biological Psychology, 2013, 92, 142-151.	2.2	27
64	Global Sensory Qualities and Aesthetic Experience in Music. Frontiers in Neuroscience, 2017, 11, 159.	2.8	27
65	Simultaneous storage of two complex temporal sound patterns in auditory sensory memory. NeuroReport, 2002, 13, 1747-1751.	1.2	25
66	Modulated neural processing of Western harmony in folk musicians. Psychophysiology, 2013, 50, 653-663.	2.4	25
67	Comprehensive auditory discrimination profiles recorded with a fast parametric musical multi-feature mismatch negativity paradigm. Clinical Neurophysiology, 2016, 127, 2065-2077.	1.5	25
68	Towards Tunable Consensus Clustering for Studying Functional Brain Connectivity During Affective Processing. International Journal of Neural Systems, 2017, 27, 1650042.	5.2	25
69	Coupling of Action-Perception Brain Networks during Musical Pulse Processing: Evidence from Region-of-Interest-Based Independent Component Analysis. Frontiers in Human Neuroscience, 2017, 11, 230.	2.0	25
70	Musical prediction error responses similarly reduced by predictive uncertainty in musicians and nonâ€musicians. European Journal of Neuroscience, 2020, 51, 2250-2269.	2.6	25
71	Decoding Musical Training from Dynamic Processing of Musical Features in the Brain. Scientific Reports, 2018, 8, 708.	3.3	24
72	Neuroanatomical substrate of noise sensitivity. NeuroImage, 2018, 167, 309-315.	4.2	24

#	Article	IF	CITATIONS
73	From pleasure to liking and back: Bottom-up and top-down neural routes to the aesthetic enjoyment of music. , 2015, , 303-318.		23
74	An ALE meta-analytic review of musical expertise. Scientific Reports, 2022, 12, .	3.3	23
75	Implicit Processing of Visual Emotions Is Affected by Sound-Induced Affective States and Individual Affective Traits. PLoS ONE, 2014, 9, e103278.	2.5	22
76	Assimilation of L2 vowels to L1 phonemes governs L2 learning in adulthood: a behavioral and ERP study. Frontiers in Human Neuroscience, 2014, 8, 279.	2.0	22
77	Effect of Explicit Evaluation on Neural Connectivity Related to Listening to Unfamiliar Music. Frontiers in Human Neuroscience, 2017, 11, 611.	2.0	22
78	Transient brain networks underlying interpersonal strategies during synchronized action. Social Cognitive and Affective Neuroscience, 2021, 16, 19-30.	3.0	22
79	The association of noise sensitivity with music listening, training, and aptitude. Noise and Health, 2015, 17, 350.	0.5	21
80	Functional connectivity of music-induced analgesia in fibromyalgia. Scientific Reports, 2019, 9, 15486.	3.3	20
81	Inter-subject Similarity of Brain Activity in Expert Musicians After Multimodal Learning: A Behavioral and Neuroimaging Study on Learning to Play a Piano Sonata. Neuroscience, 2020, 441, 102-116.	2.3	19
82	Music and Brain Plasticity: How Sounds Trigger Neurogenerative Adaptations. , 0, , .		18
83	Fractionating auditory priors: A neural dissociation between active and passive experience of musical sounds. PLoS ONE, 2019, 14, e0216499.	2.5	17
84	Extracting human cortical responses to sound onsets and acoustic feature changes in real music, and their relation to event rate. Brain Research, 2021, 1754, 147248.	2.2	17
85	Functional connectivity in human auditory networks and the origins of variation in the transmission of musical systems. ELife, 2019, 8, .	6.0	17
86	Neural Correlates of Music Listening: Does the Music Matter?. Brain Sciences, 2021, 11, 1553.	2.3	16
87	Aesthetic empowerment through music. Musicae Scientiae, 2019, 23, 285-303.	2.9	15
88	From random to regular: neural constraints on the emergence of isochronous rhythm during cultural transmission. Social Cognitive and Affective Neuroscience, 2018, 13, 877-888.	3.0	14
89	Experience Drives Synchronization: The phase and Amplitude Dynamics of Neural Oscillations to Musical Chords Are Differentially Modulated by Musical Expertise. PLoS ONE, 2015, 10, e0134211.	2.5	14
90	Constituents of Music and Visual-Art Related Pleasure – A Critical Integrative Literature Review. Frontiers in Psychology, 2017, 8, 1218.	2.1	13

#	Article	IF	CITATIONS
91	Prediction under uncertainty: Dissociating sensory from cognitive expectations in highly uncertain musical contexts. Brain Research, 2021, 1773, 147664.	2.2	13
92	Regions of Interest as nodes of dynamic functional brain networks. Network Neuroscience, 2018, 2, 513-535.	2.6	12
93	Putting Cells in Motion: Advantages of Endogenous Boosting of BDNF Production. Cells, 2021, 10, 183.	4.1	12
94	Electrical Brain Responses to Descriptive versus Evaluative Judgments of Music. Annals of the New York Academy of Sciences, 2003, 999, 155-157.	3.8	11
95	Electrophysiological Correlates of Aesthetic Music Processing. Annals of the New York Academy of Sciences, 2009, 1169, 355-358.	3.8	11
96	Musicianship and melodic predictability enhance neural gain in auditory cortex during pitch deviance detection. Human Brain Mapping, 2021, 42, 5595-5608.	3.6	11
97	The CI MuMuFe – A New MMN Paradigm for Measuring Music Discrimination in Electric Hearing. Frontiers in Neuroscience, 2020, 14, 2.	2.8	10
98	The effect of mental practice on music memorization. Psychology of Music, 2022, 50, 230-244.	1.6	9
99	Cortical Correlates of Acquired Deafness to Dissonance. Annals of the New York Academy of Sciences, 2003, 999, 158-160.	3.8	8
100	Applying Acoustical and Musicological Analysis to Detect Brain Responses to Realistic Music: A Case Study. Applied Sciences (Switzerland), 2018, 8, 716.	2.5	8
101	Intelligence and Music: Lower Intelligent Quotient Is Associated With Higher Use of Music for Experiencing Strong Sensations. Empirical Studies of the Arts, 2021, 39, 194-215.	1.7	8
102	Affective versus cognitive responses to musical chords: An ERP and behavioral study Psychomusicology: Music, Mind and Brain, 2015, 25, 423-434.	0.3	8
103	Musical training predicts cerebello-hippocampal coupling during music listening Psychomusicology: Music, Mind and Brain, 2018, 28, 152-163.	0.3	8
104	The Power of Music on Alzheimer âÃ,€Ã,™s Disease and the Need to Understand the Underlying Molecular Mechanisms. , 2015, 05, .		7
105	The forgotten artist: Why to consider intentions and interaction in a model of aesthetic experience. Physics of Life Reviews, 2017, 21, 128-130.	2.8	6
106	The urge to judge: Why the judgmental attitude has anything to do with the aesthetic enjoyment of negative emotions. Behavioral and Brain Sciences, 2017, 40, e353.	0.7	6
107	Applying stochastic spike train theory for high-accuracy human MEG/EEG. Journal of Neuroscience Methods, 2020, 340, 108743.	2.5	6
108	Diffusion map for clustering fMRI spatial maps extracted by independent component analysis. , 2013, , .		5

#	Article	IF	CITATIONS
109	Influence of Musical Expertise on the processing of Musical Features in a Naturalistic Setting. , 2019, ,		5
110	Atonal Music as a Model for Investigating Exploratory Behavior. Frontiers in Neuroscience, 0, 16, .	2.8	4
111	Clustering consistency in neuroimaging data analysis. , 2015, , .		3
112	The Empirical Aesthetics of Music. , 0, , 573-604.		3
113	Differential Effects of Trait Empathy on Functional Network Centrality. Lecture Notes in Computer Science, 2020, , 107-117.	1.3	3
114	Comparing the aesthetic experience of classic–romantic and contemporary classical music: An interview study. Psychology of Music, 2023, 51, 274-294.	1.6	3
115	Semi-blind independent component analysis of functional MRI elicited by continuous listening to music. , 2013, , .		2
116	Signaling games and music as a credible signal. Behavioral and Brain Sciences, 2021, 44, e107.	0.7	2
117	Music with Concurrent Saliences of Musical Features Elicits Stronger Brain Responses. Applied Sciences (Switzerland), 2021, 11, 9158.	2.5	2
118	Mismatch Negativity. , 2003, , 343-VIII.		2
119	Dynamic Functional Connectivity in the Musical Brain. Lecture Notes in Computer Science, 2019, , 82-91.	1.3	2
120	Empathy but not musicality is at the root of musical reward: A behavioral study with adults and children. Psychology of Music, 2022, 50, 2001-2020.	1.6	2
121	Scalable clustering based on enhanced-SMART for large-scale FMRI datasets. , 2015, , .		1
122	Data-Driven Analysis of Collections of Big Datasets by the Bi-CoPaM Method Yields Field-Specific Novel Insights. Lecture Notes in Electrical Engineering, 2017, , 25-53.	0.4	1
123	Exploration of distance metrics in consensus clustering analysis of FMRI data. , 2017, , .		0
124	Automatic Processing of Musical Sounds in the Human Brain. Springer Handbooks, 2018, , 441-452.	0.6	0