Shantanu Pradhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/750397/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres. Biomaterials, 2017, 115, 141-154.	11.4	119
2	A Microvascularized Tumor-mimetic Platform for Assessing Anti-cancer Drug Efficacy. Scientific Reports, 2018, 8, 3171.	3.3	70
3	Polymeric Biomaterials for <i>In Vitro</i> Cancer Tissue Engineering and Drug Testing Applications. Tissue Engineering - Part B: Reviews, 2016, 22, 470-484.	4.8	66
4	PEGâ€fibrinogen hydrogels for threeâ€dimensional breast cancer cell culture. Journal of Biomedical Materials Research - Part A, 2017, 105, 236-252.	4.0	64
5	Fundamentals of Laserâ€Based Hydrogel Degradation and Applications in Cell and Tissue Engineering. Advanced Healthcare Materials, 2017, 6, 1700681.	7.6	61
6	Engineered In Vitro Models of Tumor Dormancy and Reactivation. Journal of Biological Engineering, 2018, 12, 37.	4.7	51
7	Tunable hydrogels for controlling phenotypic cancer cell states to model breast cancer dormancy and reactivation. Biomaterials, 2019, 215, 119177.	11.4	50
8	Rapid Production of Cell‣aden Microspheres Using a Flexible Microfluidic Encapsulation Platform. Small, 2019, 15, e1902058.	10.0	37
9	Biofabrication Strategies and Engineered In Vitro Systems for Vascular Mechanobiology. Advanced Healthcare Materials, 2020, 9, e1901255.	7.6	35
10	Pulsed laser assisted high-throughput intracellular delivery in hanging drop based three dimensional cancer spheroids. Analyst, The, 2021, 146, 4756-4766.	3.5	22
11	Dual-Phase, Surface Tension-Based Fabrication Method for Generation of Tumor Millibeads. Langmuir, 2014, 30, 3817-3825.	3.5	21
12	The Influence of Ligand Density and Degradability on Hydrogel Induced Breast Cancer Dormancy and Reactivation. Advanced Healthcare Materials, 2021, 10, e2002227.	7.6	13
13	The Influence of Matrix-Induced Dormancy on Metastatic Breast Cancer Chemoresistance. ACS Applied Bio Materials, 2020, 3, 5832-5844.	4.6	11
14	Fabrication, characterization, and implementation of engineered hydrogels for controlling breast cancer cell phenotype and dormancy. MethodsX, 2019, 6, 2744-2766.	1.6	6
15	Datasets describing hydrogel properties and cellular metrics for modeling of tumor dormancy. Data in Brief, 2019, 25, 104128.	1.0	5
16	Abstract 620: Microfluidic cancer-on-a-chip platform for assessing anti-cancer drug efficacies. Cancer Research, 2016, 76, 620-620.	0.9	2
17	Photocrosslinked Microspheres: Rapid Production of Cell‣aden Microspheres Using a Flexible Microfluidic Encapsulation Platform (Small 47/2019). Small, 2019, 15, 1970254.	10.0	1

Abstract 4108:In vitrovascularized model for tumor growth and progression. , 2016, , .

0