Dian-Long Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7503897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A three-dimensional porous LiFePO ₄ cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy and Environmental Science, 2015, 8, 869-875.	30.8	412
2	Graphene-based composites for electrochemical energy storage. Energy Storage Materials, 2020, 24, 22-51.	18.0	364
3	Anodic Oxidation Strategy toward Structure-Optimized V ₂ O ₃ Cathode <i>via</i> Electrolyte Regulation for Zn-Ion Storage. ACS Nano, 2020, 14, 7328-7337.	14.6	229
4	A Hierarchical Porous C@LiFePO ₄ /Carbon Nanotubes Microsphere Composite for Highâ€Rate Lithiumâ€lon Batteries: Combined Experimental and Theoretical Study. Advanced Energy Materials, 2016, 6, 1600426.	19.5	194
5	Prelithiation: A Crucial Strategy for Boosting the Practical Application of Next-Generation Lithium Ion Battery. ACS Nano, 2021, 15, 2197-2218.	14.6	192
6	The enhanced X-ray Timing and Polarimetry mission—eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	178
7	Synergistic deficiency and heterojunction engineering boosted VO2 redox kinetics for aqueous zinc-ion batteries with superior comprehensive performance. Energy Storage Materials, 2020, 33, 390-398.	18.0	178
8	Solid Electrolyte Interphases on Sodium Metal Anodes. Advanced Functional Materials, 2020, 30, 2004891.	14.9	154
9	3D self-supported hierarchical core/shell structured MnCo ₂ O ₄ @CoS arrays for high-energy supercapacitors. Journal of Materials Chemistry A, 2018, 6, 1822-1831.	10.3	141
10	Mesoporous carbon-coated LiFePO ₄ nanocrystals co-modified with graphene and Mg ²⁺ doping as superior cathode materials for lithium ion batteries. Nanoscale, 2014, 6, 986-995.	5.6	139
11	A three dimensional SiO _x /C@RGO nanocomposite as a high energy anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 3521-3527.	10.3	138
12	Hierarchical design of hollow Co-Ni LDH nanocages strung by MnO2 nanowire with enhanced pseudocapacitive properties. Energy Storage Materials, 2019, 19, 370-378.	18.0	127
13	LiFePO4 quantum-dots composite synthesized by a general microreactor strategy for ultra-high-rate lithium ion batteries. Nano Energy, 2017, 42, 363-372.	16.0	121
14	Construction of Structure-Tunable Si@Void@C Anode Materials for Lithium-Ion Batteries through Controlling the Growth Kinetics of Resin. ACS Nano, 2019, 13, 12219-12229.	14.6	119
15	Synergistic nanostructure and heterointerface design propelled ultra-efficient in-situ self-transformation of zinc-ion battery cathodes with favorable kinetics. Nano Energy, 2021, 81, 105601.	16.0	113
16	Desired crystal oriented LiFePO ₄ nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage. Nanoscale, 2015, 7, 8819-8828.	5.6	107
17	Improvement of the electrochemical performance of carbon-coated LiFePO ₄ modified with reduced graphene oxide. Journal of Materials Chemistry A, 2013, 1, 135-144.	10.3	104
18	Interfacial and Electronic Modulation via Localized Sulfurization for Boosting Lithium Storage Kinetics. Advanced Materials, 2020, 32, e2000151.	21.0	98

#	Article	IF	CITATIONS
19	All-climate sodium ion batteries based on the NASICON electrode materials. Nano Energy, 2016, 30, 756-761.	16.0	81
20	Modified solid-electrolyte interphase toward stable Li metal anode. Nano Energy, 2020, 77, 105308.	16.0	75
21	A reduced graphene oxide modified metallic cobalt composite with superior electrochemical performance for supercapacitors. RSC Advances, 2015, 5, 63553-63560.	3.6	74
22	A 3D conductive scaffold with lithiophilic modification for stable lithium metal batteries. Journal of Materials Chemistry A, 2018, 6, 17967-17976.	10.3	57
23	Ultrafast preparation of three-dimensional porous tin–graphene composites with superior lithium ion storage. Journal of Materials Chemistry A, 2014, 2, 12918.	10.3	53
24	Synthesis and characterization of sulfonated graphene as a highly active solid acid catalyst for the ester-exchange reaction. Catalysis Science and Technology, 2013, 3, 1194.	4.1	52
25	The composite electrode of LiFePO ₄ cathode materials modified with exfoliated graphene from expanded graphite for high power Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 2822-2829.	10.3	51
26	Carbon nanotube decorated NaTi ₂ (PO ₄) ₃ /C nanocomposite for a high-rate and low-temperature sodium-ion battery anode. RSC Advances, 2016, 6, 70277-70283.	3.6	51
27	Holey graphene modified LiFePO4 hollow microsphere as an efficient binary sulfur host for high-performance lithium-sulfur batteries. Energy Storage Materials, 2020, 26, 433-442.	18.0	49
28	The synergy effect on Li storage of LiFePO4 with activated carbon modifications. RSC Advances, 2013, 3, 20024.	3.6	46
29	A MIL-47(V) derived hierarchical lasagna-structured V ₂ O ₃ @C hollow microcuboid as an efficient sulfur host for high-performance lithium–sulfur batteries. Nanoscale, 2020, 12, 4552-4561.	5.6	44
30	A facile hydrothermal synthesis of a reduced graphene oxide modified cobalt disulfide composite electrode for high-performance supercapacitors. RSC Advances, 2016, 6, 7129-7138.	3.6	41
31	Boosting electrochemical kinetics of S cathodes for room temperature Na/S batteries. Matter, 2021, 4, 1768-1800.	10.0	39
32	Facile controlled synthesis of a hierarchical porous nanocoral-like Co ₃ S ₄ electrode for high-performance supercapacitors. RSC Advances, 2016, 6, 54076-54086.	3.6	36
33	In situ growth of CuO submicro-sheets on optimized Cu foam to induce uniform Li deposition and stripping for stable Li metal batteries. Electrochimica Acta, 2020, 339, 135941.	5.2	36
34	Core-shell structured Fe 3 O 4 @NiS nanocomposite as high-performance anode material for alkaline nickel-iron rechargeable batteries. Electrochimica Acta, 2017, 231, 479-486.	5.2	35
35	A regular, compact but microporous packing structure: high-density graphene assemblies for high-volumetric-performance supercapacitors. Journal of Materials Chemistry A, 2015, 3, 12653-12662.	10.3	34
36	A new reflowing strategy based on lithiophilic substrates towards smooth and stable lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 18126-18134.	10.3	32

#	Article	IF	CITATIONS
37	Trifunctional Electrode Additive for High Active Material Content and Volumetric Lithiumâ€lon Electrode Densities. Advanced Energy Materials, 2019, 9, 1803390.	19.5	32
38	Growth of LiFePO4 nanoplatelets with orientated (010) facets on graphene for fast lithium storage. Materials Letters, 2014, 118, 137-141.	2.6	31
39	Carbon-coated single-crystalline LiFePO4 nanocomposites for high-power Li-ion batteries: the impact of minimization of the precursor particle size. RSC Advances, 2014, 4, 10067.	3.6	31
40	Sodiophilic Decoration of a Three-Dimensional Conductive Scaffold toward a Stable Na Metal Anode. ACS Sustainable Chemistry and Engineering, 2020, 8, 5452-5463.	6.7	31
41	Suppressing lithium dendrites within inorganic solid-state electrolytes. Cell Reports Physical Science, 2022, 3, 100706.	5.6	30
42	Stabilizing the structure of LiMn _{0.5} Fe _{0.5} PO ₄ <i>via</i> the formation of concentration-gradient hollow spheres with Fe-rich surfaces. Nanoscale, 2019, 11, 3933-3944.	5.6	27
43	Purifying the Phase of NaTi ₂ (PO ₄) ₃ for Enhanced Na ⁺ Storage Properties. ACS Applied Materials & Interfaces, 2019, 11, 10663-10671.	8.0	27
44	A V2O3@N–C cathode material for aqueous zinc-ion batteries with boosted zinc-ion storage performance. Rare Metals, 2022, 41, 1605-1615.	7.1	26
45	Preparation of Co3O4 nanoplate/graphene sheet composites and their synergistic electrochemical performance. Ionics, 2013, 19, 215-220.	2.4	25
46	One-pot synthesis of SnS nanorods and their lithium storage properties. Ionics, 2014, 20, 141-144.	2.4	25
47	A three-dimensional cathode matrix with bi-confinement effect of polysulfide for lithium-sulfur battery. Applied Surface Science, 2018, 427, 396-404.	6.1	23
48	Metal–organic framework derived 3D graphene decorated NaTi ₂ (PO ₄) ₃ for fast Na-ion storage. Nanoscale, 2019, 11, 7347-7357.	5.6	23
49	Hydrogen evolution behavior of electrochemically active carbon modified with indium and its effects on the cycle performance of valve-regulated lead-acid batteries. RSC Advances, 2014, 4, 44152-44157.	3.6	20
50	A rational VO2 nanotube/graphene binary sulfur host for superior lithium-sulfur batteries. Journal of Alloys and Compounds, 2020, 838, 155504.	5.5	18
51	Dual roles of iron powder on the synthesis of LiFePO ₄ @C/graphene cathode a nanocomposite for high-performance lithium ion batteries. RSC Advances, 2015, 5, 100018-100023.	3.6	17
52	Three-dimensional nitrogen-doped graphene aerogel toward dendrite-free lithium-metal anode. Ionics, 2020, 26, 13-22.	2.4	17
53	Preparation and characterization of layered LiNi _{0.9} Co _{0.05} Mn _{0.025} Mg _{0.025} 0.025 cathode material by a sol–gel method for lithium-ion batteries. RSC Advances, 2015, 5, 40779-40784.	3.6	16
54	A study on LiFePO ₄ /graphite cells with built-in Li ₄ Ti ₅ O ₁₂ reference electrodes. RSC Advances, 2018, 8, 18597-18603.	3.6	15

#	Article	IF	CITATIONS
55	Corrosion resistance of nickel foam modified with electroless Ni–P alloy as positive current collector in a lithium ion battery. RSC Advances, 2013, 3, 25648.	3.6	13
56	Stress-release design for high-capacity and long-time lifespan aqueous zinc-ion batteries. Materials Today Energy, 2021, 21, 100799.	4.7	12
57	Facile fabrication of coal-derived activated carbon/Co3O4 nanocomposites with superior electrochemical performance. Ionics, 2017, 23, 1927-1931.	2.4	10
58	A LiFePO ₄ /Li ₂ S _n hybrid system with enhanced Li-ion storage performance. New Journal of Chemistry, 2018, 42, 6626-6630.	2.8	9
59	Interface coupling in FeOOH/MXene heterojunction for highly reversible lithium-ion storage. Materials Today Energy, 2021, 19, 100584.	4.7	9
60	Modified carbothermal synthesis and electrochemical performance of LiFePO4/C composite as cathode materials for lithium-ion batteries. Ionics, 2013, 19, 245-252.	2.4	8
61	Li ₃ V ₂ (PO ₄) ₃ as a cathode additive for the over-discharge protection of lithium ion batteries. RSC Advances, 2016, 6, 76933-76937.	3.6	8
62	LiAlCl4·3SO2: a promising inorganic electrolyte for stable Li metal anode at room and low temperature. Ionics, 2019, 25, 4137-4147.	2.4	7
63	A novel route to fabricate high-density graphene assemblies for high-volumetric-performance supercapacitors: effect of cation pre-intercalation. RSC Advances, 2016, 6, 36971-36977.	3.6	6
64	Lithium fluoride additive for inorganic LiAlCl4·3SO2 electrolyte toward stable lithium metal anode. Electrochimica Acta, 2020, 345, 136193.	5.2	6
65	Preparation of SnO2–graphene from SnS–graphene oxide for enhanced reversible lithium ion storage. Ionics, 2013, 19, 1223-1228.	2.4	5
66	Nitrogen-doped carbon coated SiO nanoparticles Co-modified with nitrogen-doped graphene as a superior anode material for lithium-ion batteries. RSC Advances, 2014, 4, 35717-35725.	3.6	5
67	A stable protective layer toward high-performance lithium metal battery. lonics, 2019, 25, 4067-4074.	2.4	5
68	Construction of Dual arbon Coâ€Modified LiFePO 4 Nanocrystals via Microreactor Strategy for Highâ€Performance Lithium Ion Batteries. Energy Technology, 2020, 8, 2000171.	3.8	5
69	Precast solid electrolyte interface film on Li metal anode toward longer cycling life. Ionics, 2020, 26, 1711-1719.	2.4	4
70	Grapheneâ€Modified Mesoporous Iron Phosphate as Superior Binary Sulfur Host for Lithium–Sulfur Batteries. Energy Technology, 2020, 8, 1901462.	3.8	4
71	Preparation and controllable prelithiation of core–shell SnO _{<i>x</i>} @C composites for high-performance lithium-ion batteries. CrystEngComm, 2022, 24, 3189-3198.	2.6	4
72	A LiA1Cl4·3SO2-NaAlCl4·2SO2 binary inorganic electrolyte with improved electrochemical performance for Li-metal batteries. Ionics, 2019, 25, 4751-4760.	2.4	3

#	Article	IF	CITATIONS
73	A three-dimensional multilayered SiO–graphene nanostructure as a superior anode material for lithium-ion batteries. RSC Advances, 2014, 4, 36502-36506.	3.6	2
74	The difference in aging behaviors and mechanisms between floating charge and cycling of LiFePO4/graphite batteries. Ionics, 2019, 25, 2139-2145.	2.4	2
75	EQCM studies of composition and electrochemical performance of film prepared by electrochemical reduction of sodium ferrate. Journal of Solid State Electrochemistry, 2012, 16, 2079-2084.	2.5	1
76	3D Alkâ€MXene@Fe 3 O 4 as Cathode Additive for Rechargeable Lithiumâ^'Sulfur Batteries. Advanced Energy and Sustainability Research, 0, , 2100167.	5.8	1
77	Study on modification and failure of precast solid electrolyte interface film on Li metal anodes. International Journal of Energy Research, 2021, 45, 14034-14046.	4.5	0