
Dai-Soo Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7503433/publications.pdf Version: 2024-02-01

DAL-SOOLEE

#	Article	IF	CITATIONS
1	Self-healing of cross-linked PU via dual-dynamic covalent bonds of a Schiff base from cystine and vanillin. Materials and Design, 2019, 172, 107774.	3.3	143
2	High performance polyurethane nanocomposite films prepared from a masterbatch of graphene oxide in polyether polyol. Chemical Engineering Journal, 2014, 253, 356-365.	6.6	100
3	Development of High Performance Polyurethane Elastomers Using Vanillin-Based Green Polyol Chain Extender Originating from Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 2017, 5, 4582-4588.	3.2	92
4	Effects of functional groups on the graphene sheet for improving theÂthermomechanical properties of polyurethane nanocomposites. Composites Part B: Engineering, 2015, 78, 192-201.	5.9	88
5	Thermal Healing, Reshaping and Ecofriendly Recycling of Epoxy Resin Crosslinked with Schiff Base of Vanillin and Hexane-1,6-Diamine. Polymers, 2019, 11, 293.	2.0	68
6	Characteristics of polyimide ultrafine fibers prepared through electrospinning. Polymer International, 2003, 52, 429-432.	1.6	54
7	Liquid crystalline epoxy resin with improved thermal conductivity by intermolecular dipole–dipole interactions. Journal of Polymer Science Part A, 2019, 57, 708-715.	2.5	52
8	Sustainable rigid polyurethane foams based on recycled polyols from chemical recycling of waste polyurethane foams. Journal of Applied Polymer Science, 2019, 136, 47916.	1.3	38
9	Rheological Properties and Thermal Conductivity of Epoxy Resins Filled with a Mixture of Alumina and Boron Nitride. Polymers, 2019, 11, 597.	2.0	38
10	Effect of polymerization procedure on thermal and mechanical properties of polyether based thermoplastic polyurethanes. Macromolecular Research, 2002, 10, 365-368.	1.0	22
11	Effect of calcite and calcite/zeolite hybrid fillers on LLDPE and PP composites. Advances in Polymer Technology, 2004, 23, 230-238.	0.8	17
12	Synthesis and Characterization of Healable Waterborne Polyurethanes with Cystamine Chain Extenders. Molecules, 2019, 24, 1492.	1.7	16
13	Thermally Self-Healing Graphene-Nanoplate/Polyurethane Nanocomposites via Diels–Alder Reaction through a One-Shot Process. Nanomaterials, 2019, 9, 434.	1.9	16
14	Chemical Recycling of Used Printed Circuit Board Scraps: Recovery and Utilization of Organic Products. Processes, 2019, 7, 22.	1.3	16
15	Sorbitol as a Chain Extender of Polyurethane Prepolymers to Prepare Self-Healable and Robust Polyhydroxyurethane Elastomers. Molecules, 2018, 23, 2515.	1.7	15
16	Linear low density polyethylene (LLDPE)/zeolite microporous composite film. Macromolecular Research, 2003, 11, 357-367.	1.0	14
17	Preparation and Characterization of Isosorbide-Based Self-Healable Polyurethane Elastomers with Thermally Reversible Bonds. Molecules, 2019, 24, 1061.	1.7	14
18	Large Improvement in the Mechanical Properties of Polyurethane Nanocomposites Based on a Highly Concentrated Graphite Nanoplate/Polyol Masterbatch. Nanomaterials, 2019, 9, 389.	1.9	13

DAI-SOO LEE

#	Article	IF	CITATIONS
19	Introduction of Reversible Urethane Bonds Based on Vanillyl Alcohol for Efficient Self-Healing of Polyurethane Elastomers. Molecules, 2019, 24, 2201.	1.7	12
20	Synthesis of Self-Healing Waterborne Polyurethane Systems Chain Extended with Chitosan. Polymers, 2019, 11, 503.	2.0	12
21	Thermally Healable and Recyclable Graphene-Nanoplate/Epoxy Composites Via an In-Situ Diels-Alder Reaction on the Graphene-Nanoplate Surface. Polymers, 2019, 11, 1057.	2.0	9
22	High-Performance Adhesives Based on Maleic Anhydride-g-EPDM Rubbers and Polybutene for Laminating Cast Polypropylene Film and Aluminum Foil. Coatings, 2019, 9, 61.	1.2	9
23	Effects of Isosorbide Incorporation into Flexible Polyurethane Foams: Reversible Urethane Linkages and Antioxidant Activity. Molecules, 2019, 24, 1347.	1.7	9
24	Nanocomposites of Rigid Polyurethane Foam and Graphene Nanoplates Obtained by Exfoliation of Natural Graphite in Polymeric 4,4′-Diphenylmethane Diisocyanate. Nanomaterials, 2022, 12, 685.	1.9	9
25	Curing behaviour of unsaturated polyester resins based on recycled poly(ethylene terephthalate) (RPET): effects of RPET content and glycol type. Polymer International, 1997, 44, 143-148.	1.6	8
26	The Effects of in Situ-Formed Silver Nanoparticles on the Electrical Properties of Epoxy Resin Filled with Silver Nanowires. Polymers, 2016, 8, 157.	2.0	8
27	Effect of Molecular Weight of Poly(tetramethylene glycol) on Waterborne Polyurethane Dispersion Coating Gloss. Bulletin of the Korean Chemical Society, 2019, 40, 1046-1049.	1.0	8
28	Self-Healing and Rheological Properties of Polyhydroxyurethane Elastomers Based on Glycerol Carbonate Capped Prepolymers. Macromolecular Research, 2019, 27, 460-469.	1.0	8
29	Characteristics of Self-Healable Copolymers of Styrene and Eugenol Terminated Polyurethane Prepolymer. Polymers, 2019, 11, 1674.	2.0	7
30	Thermal Properties of Ester Based Thermoplastic Polyurethane/ Polyester Ionomer Blends. Polymer Journal, 2003, 35, 79-83.	1.3	6
31	Preparation and Properties of Pyreneâ€Modified Multi―Walled Carbon Nanotube/Epoxy Resin Nanocomposites. Macromolecular Symposia, 2008, 264, 100-106.	0.4	5
32	Design of Azomethine Diols for Efficient Self-Healing of Strong Polyurethane Elastomers. Molecules, 2018, 23, 2928.	1.7	5
33	Self-Healing and Mechanical Properties of Thermoplastic Polyurethane/Eugenol-Based Phenoxy Resin Blends via Exchange Reactions. Polymers, 2020, 12, 1011.	2.0	5
34	Controllable Surface and Optical Properties of Methacrylic Copolymer Films Using Various Monomer Combinations. Langmuir, 2018, 34, 11850-11856.	1.6	4
35	Rationally Designed Eugenol-Based Chain Extender for Self-Healing Polyurethane Elastomers. ACS Omega, 2021, 6, 28848-28858.	1.6	4
36	Preparation and properties of epoxy resin/silicone hybrids for electronic applications. , 2009, , .		3

#	Article	IF	CITATIONS
37	Effect of Poly(4-Styrene Sulfonic Acid) on the Surface Resistivities of Sulfonated Poly(Styrene-B-Ethylenebutylene-B-Styrene) Filled with Multiwalled Carbon Nanotubes (MWNTs) for Antistatic Coating and EMI Shielding. , 2007, , .		1
38	Craphene based composites as a counter electrode for dye-sensitized solar cells. , 2012, , .		1