
Mingshu Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7503121/publications.pdf Version: 2024-02-01

Μινοεμμ Χιλο

#	Article	IF	CITATIONS
1	Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosensors and Bioelectronics, 2014, 53, 428-439.	5.3	233
2	Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chemical Reviews, 2019, 119, 11631-11717.	23.0	207
3	Selfâ€Assembly of Enzymeâ€Like Nanofibrous Câ€Molecular Hydrogel for Printed Flexible Electrochemical Sensors. Advanced Materials, 2018, 30, e1706887.	11.1	198
4	Affinity-Modulated Molecular Beacons on MoS ₂ Nanosheets for MicroRNA Detection. ACS Applied Materials & Interfaces, 2018, 10, 35794-35800.	4.0	87
5	DNA-Encoded Raman-Active Anisotropic Nanoparticles for microRNA Detection. Analytical Chemistry, 2017, 89, 9850-9856.	3.2	85
6	MoS ₂ Nanoprobe for MicroRNA Quantification Based on Duplex-Specific Nuclease Signal Amplification. ACS Applied Materials & Interfaces, 2018, 10, 7852-7858.	4.0	81
7	Stochastic DNA Walkers in Droplets for Superâ€Multiplexed Bacterial Phenotype Detection. Angewandte Chemie - International Edition, 2019, 58, 15448-15454.	7.2	79
8	Stochastic DNA Dual-Walkers for Ultrafast Colorimetric Bacteria Detection. Analytical Chemistry, 2020, 92, 4990-4995.	3.2	76
9	Programming Drug Delivery Kinetics for Active Burst Release with DNA Toehold Switches. Journal of the American Chemical Society, 2019, 141, 20354-20364.	6.6	68
10	Poly-cytosine-mediated nanotags for SERS detection of Hg ²⁺ . Nanoscale, 2017, 9, 14184-14191.	2.8	61
11	Electrodeposition of Ni(OH)2/NiOOH in the Presence of Urea for the Improved Oxygen Evolution. Electrochimica Acta, 2015, 164, 196-202.	2.6	55
12	Synthesizing Nanoparticles of Co-P-Se compounds as Electrocatalysts for the Hydrogen Evolution Reaction. Electrochimica Acta, 2015, 165, 206-210.	2.6	54
13	Assembly Pathway Selection with DNA Reaction Circuits for Programming Multiple Cell–Cell Interactions. Journal of the American Chemical Society, 2021, 143, 3448-3454.	6.6	51
14	Stochastic RNA Walkers for Intracellular MicroRNA Imaging. Analytical Chemistry, 2019, 91, 11253-11258.	3.2	49
15	Logic Catalytic Interconversion of G-Molecular Hydrogel. ACS Applied Materials & Interfaces, 2018, 10, 4512-4518.	4.0	47
16	Optochemical Control of DNAâ€ S witching Circuits for Logic and Probabilistic Computation. Angewandte Chemie - International Edition, 2021, 60, 3397-3401.	7.2	44
17	Fractal Nanoplasmonic Labels for Supermultiplex Imaging in Single Cells. Journal of the American Chemical Society, 2019, 141, 11938-11946.	6.6	37
18	Biomineralized DNA nanospheres by metal organic framework for enhanced chemodynamic therapy. Chemical Engineering Journal, 2021, 415, 129036.	6.6	37

Μινςςη Χιλο

#	Article	IF	CITATIONS
19	A versatile biomolecular detection platform based on photo-induced enhanced Raman spectroscopy. Biosensors and Bioelectronics, 2020, 147, 111742.	5.3	33
20	Onsite Substitution Synthesis of Ultrathin Ni Nanofilms Loading Ultrafine Pt Nanoparticles for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2015, 7, 26101-26107.	4.0	32
21	Single Walled Carbon Nanotube Sandwiched Ni-Ag Hybrid Nanoparticle Layers for the Extraordinary Electrocatalysis toward Glucose Oxidation. Electrochimica Acta, 2016, 188, 197-209.	2.6	30
22	Fractal SERS nanoprobes for multiplexed quantitative gene profiling. Biosensors and Bioelectronics, 2020, 156, 112130.	5.3	30
23	Stochastic DNA Walkers in Droplets for Superâ€Multiplexed Bacterial Phenotype Detection. Angewandte Chemie, 2019, 131, 15594-15600.	1.6	29
24	Bio-functional G-molecular hydrogels for accelerated wound healing. Materials Science and Engineering C, 2019, 105, 110067.	3.8	29
25	Real-Time Continuous Identification of Greenhouse Plant Pathogens Based on Recyclable Microfluidic Bioassay System. ACS Applied Materials & Interfaces, 2017, 9, 31568-31575.	4.0	28
26	Framework Nucleic Acid-Mediated Pull-Down MicroRNA Detection with Hybridization Chain Reaction Amplification. ACS Applied Bio Materials, 2018, 1, 859-864.	2.3	28
27	Synthesis of Ultrafine Pt/Pd Bimetallic Nanoparticles and Their Decoration on MWCNTs for Hydrogen Evolution. Journal of the Electrochemical Society, 2015, 162, H415-H418.	1.3	27
28	Simultaneous in situ formation of Ni-based catalysts at the anode for glycerol oxidation and at the cathode for hydrogen evolution. Journal of Applied Electrochemistry, 2016, 46, 1-8.	1.5	26
29	A Self-Calibrating Surface-Enhanced Raman Scattering-Active System for Bacterial Phenotype Detection. Analytical Chemistry, 2020, 92, 4491-4497.	3.2	25
30	Multiâ€Mode Reconfigurable DNAâ€Based Chemical Reaction Circuits for Soft Matter Computing and Control. Angewandte Chemie - International Edition, 2021, 60, 15013-15019.	7.2	25
31	Nanoplates and Nanospheres of Co3(VO4)2 as Noble Metal-free Electrocatalysts for Oxygen Evolution. Electrochimica Acta, 2015, 180, 260-267.	2.6	24
32	Characteristics, Applications and Determination of Bismuth. Journal of Nanoscience and Nanotechnology, 2016, 16, 6679-6689.	0.9	23
33	Multivalent Aptamer-modified DNA Origami as Drug Delivery System for Targeted Cancer Therapy. Chemical Research in Chinese Universities, 2020, 36, 254-260.	1.3	23
34	Onsite Deposition of Self-Repairing Biomimetic Nanostructured Ni Catalysts with Improved Electrocatalysis toward Glycerol Oxidation for H 2 Production. Electrochimica Acta, 2015, 178, 209-216.	2.6	22
35	Rational Design of Framework Nucleic Acids for Bioanalytical Applications. ChemPlusChem, 2019, 84, 512-523.	1.3	22
36	DNA mediated self-assembly of multicellular microtissues. Microphysiological Systems, 0, 1, 1-1.	2.0	21

Μινςςη Χιλο

#	Article	IF	CITATIONS
37	The Self-Adsorption of Ni Ultrathin Layer on Glassy Carbon Surface and Their Electrocatalysis toward Glucose. Journal of the Electrochemical Society, 2014, 161, H375-H378.	1.3	17
38	Nanoscale organization of two-dimensional multimeric pMHC reagents with DNA origami for CD8+ T cell detection. Nature Communications, 2022, 13, .	5.8	17
39	Synthesizing amorphous Ni-P micro-/nano-composites with perfect roundness or embryo-like structures. Advanced Powder Technology, 2017, 28, 3095-3103.	2.0	15
40	Synthesis of cobalt vanadium nanomaterials for efficient electrocatalysis of oxygen evolution. Frontiers of Chemical Science and Engineering, 2018, 12, 409-416.	2.3	15
41	Biointerface Engineering with Nucleic Acid Materials for Biosensing Applications. Advanced Functional Materials, 2022, 32, .	7.8	15
42	Co–Fe–Se ultrathin nanosheet-fabricated microspheres for efficient electrocatalysis of hydrogen evolution. Journal of Applied Electrochemistry, 2017, 47, 361-367.	1.5	14
43	Intracellular Logic Computation with Framework Nucleic <scp>Acidâ€Based</scp> Circuits for <scp>mRNA</scp> Imaging ^{â€} . Chinese Journal of Chemistry, 2021, 39, 947-953.	2.6	14
44	Nucleic Acid-Based Cell Surface Engineering Strategies and Their Applications. ACS Applied Bio Materials, 2022, 5, 1901-1915.	2.3	11
45	DNAâ€Based Chemical Reaction Networks. ChemBioChem, 2019, 20, 1105-1114.	1.3	10
46	Optochemical Control of DNAâ€&witching Circuits for Logic and Probabilistic Computation. Angewandte Chemie, 2021, 133, 3439-3443.	1.6	8
47	Multiple-Aptamer-Integrated DNA-Origami-Based Chemical Nose Sensors for Accurate Identification of Cancer Cells. Analytical Chemistry, 2022, 94, 10192-10197.	3.2	8
48	Multiâ€Mode Reconfigurable DNAâ€Based Chemical Reaction Circuits for Soft Matter Computing and Control. Angewandte Chemie, 2021, 133, 15140-15146.	1.6	7
49	Circularized blocker-displacement amplification for multiplex detection of rare DNA variants. Chemical Communications, 2020, 56, 12331-12334.	2.2	6
50	DNA‣caffolded Disulfide Redox Network for Programming Drugâ€Delivery Kinetics. Chemistry - A European Journal, 2021, 27, 8745-8752.	1.7	6
51	Programming Receptor Clustering with DNA Probabilistic Circuits for Enhanced Natural Killer Cell Recognition. Angewandte Chemie - International Edition, 2022, 61, e202203800.	7.2	6
52	THE ADSORPTION OF BIIII/Pt NANOCOMPOSITES AT PLATINUM ELECTRODE WITH HIGHLY ENHANCED ELECTROCATALYSIS TOWARD GLUCOSE. Surface Review and Letters, 2014, 21, 1450042.	0.5	5
53	Ultrasensitive Detection of Metal Ions with DNA Nanostructure. Methods in Molecular Biology, 2018, 1811, 137-149.	0.4	5
54	Synthesis of Uniform Platinum Nanoparticles Using Glucose as Dispersant. Nanoscience and Nanotechnology Letters, 2014, 6, 592-595.	0.4	4

Μινςςη Χιλο

#	Article	IF	CITATIONS
55	Self-adsorption of an Ultrathin Bismuth Layer in the Size of Ions on an Au Surface. Electrocatalysis, 2015, 6, 211-219.	1.5	3
56	Aptamerâ€Functionalized Fractal Nanoplasmonicsâ€Assisted Laser Desorption/Ionization Mass Spectrometry for Metabolite Detection. ChemPlusChem, 2022, 87, e202100479.	1.3	3
57	Programming Receptor Clustering with DNA Probabilistic Circuits for Enhanced Natural Killer Cell Recognition. Angewandte Chemie, 2022, 134, .	1.6	2
58	ANCHOR OF Ni2+ ON THE AGMATINE SULFATE-MODIFIED ELECTRODES FOR THE DETERMINATION OF H2O2 IN FOOD. Surface Review and Letters, 2017, 24, 1750008.	0.5	1
59	Synthesis of Au nanoparticles with Bi adlayers using glucose as dispersant. Colloid Journal, 2017, 79, 133-137.	0.5	0
60	Innenrücktitelbild: Stochastic DNA Walkers in Droplets for Superâ€Multiplexed Bacterial Phenotype Detection (Angew. Chem. 43/2019). Angewandte Chemie, 2019, 131, 15699-15699.	1.6	0
61	Titelbild: Optochemical Control of DNAâ€Switching Circuits for Logic and Probabilistic Computation (Angew. Chem. 7/2021). Angewandte Chemie. 2021. 133. 3353-3353.	1.6	0