Shingo Kajimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7502817/publications.pdf

Version: 2024-02-01

26567 26548 26,884 110 56 107 citations h-index g-index papers 115 115 115 33589 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 2012, 481, 463-468.	13.7	3,646
3	PRDM16 controls a brown fat/skeletal muscle switch. Nature, 2008, 454, 961-967.	13.7	1,997
4	Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. Journal of Clinical Investigation, 2011, 121, 96-105.	3.9	1,036
5	Transcriptional Control of Brown Fat Determination by PRDM16. Cell Metabolism, 2007, 6, 38-54.	7.2	996
6	Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARÎ ³ by Cdk5. Nature, 2010, 466, 451-456.	13.7	793
7	Brown and Beige Fat: Physiological Roles beyond Heat Generation. Cell Metabolism, 2015, 22, 546-559.	7.2	763
8	Ablation of PRDM16 and Beige Adipose Causes Metabolic Dysfunction and a Subcutaneous to Visceral Fat Switch. Cell, 2014, 156, 304-316.	13.5	719
9	PPAR \hat{I}^3 agonists Induce a White-to-Brown Fat Conversion through Stabilization of PRDM16 Protein. Cell Metabolism, 2012, 15, 395-404.	7.2	658
10	Initiation of myoblast to brown fat switch by a PRDM16–C/EBP-β transcriptional complex. Nature, 2009, 460, 1154-1158.	13.7	620
11	A Creatine-Driven Substrate Cycle Enhances Energy Expenditure and Thermogenesis in Beige Fat. Cell, 2015, 163, 643-655.	13.5	575
12	Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. Journal of Clinical Investigation, 2015, 125, 478-486.	3.9	547
13	Human BAT Possesses Molecular Signatures That Resemble Beige/Brite Cells. PLoS ONE, 2012, 7, e49452.	1.1	541
14	UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nature Medicine, 2017, 23, 1454-1465.	15.2	429
15	Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes and Development, 2008, 22, 1397-1409.	2.7	393
16	Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nature Medicine, 2016, 22, 427-432.	15.2	381
17	Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature, 2018, 560, 102-106.	13.7	380
18	The Common and Distinct Features of Brown and Beige Adipocytes. Trends in Endocrinology and Metabolism, 2018, 29, 191-200.	3.1	377

#	Article	IF	CITATIONS
19	Genetic and functional characterization of clonally derived adult human brown adipocytes. Nature Medicine, 2015, 21, 389-394.	15.2	366
20	Transcriptional Control of Brown Fat Development. Cell Metabolism, 2010, 11, 257-262.	7.2	362
21	A New Era in Brown Adipose Tissue Biology: Molecular Control of Brown Fat Development and Energy Homeostasis. Annual Review of Physiology, 2014, 76, 225-249.	5. 6	348
22	BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature, 2019, 572, 614-619.	13.7	332
23	Beige Adipocyte Maintenance Is Regulated by Autophagy-Induced Mitochondrial Clearance. Cell Metabolism, 2016, 24, 402-419.	7.2	282
24	EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature, 2013, 504, 163-167.	13.7	272
25	Brown Adipose Tissue Activation Is Linked to Distinct Systemic Effects on Lipid Metabolism in Humans. Cell Metabolism, 2016, 23, 1200-1206.	7.2	264
26	Transcriptional control of brown adipocyte development and physiological functionâ€"of mice and men. Genes and Development, 2009, 23, 788-797.	2.7	250
27	Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nature Reviews Molecular Cell Biology, 2016, 17, 480-495.	16.1	243
28	Insulin-like growth factor-binding protein-1 (IGFBP-1) mediates hypoxia-induced embryonic growth and developmental retardation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1240-1245.	3.3	226
29	Metabolic adaptation and maladaptation in adipose tissue. Nature Metabolism, 2019, 1, 189-200.	5.1	224
30	The cellular and functional complexity of thermogenic fat. Nature Reviews Molecular Cell Biology, 2021, 22, 393-409.	16.1	203
31	Regulation of systemic energy homeostasis by serotonin in adipose tissues. Nature Communications, 2015, 6, 6794.	5.8	187
32	Thermal stress induces glycolytic beige fat formation via a myogenic state. Nature, 2019, 565, 180-185.	13.7	178
33	Mitochondrial Patch Clamp of Beige Adipocytes Reveals UCP1-Positive and UCP1-Negative Cells Both Exhibiting Futile Creatine Cycling. Cell Metabolism, 2017, 25, 811-822.e4.	7.2	174
34	CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling. Cell, 2020, 182, 563-577.e20.	13.5	156
35	Effects of fasting on growth hormone/insulin-like growth factor I axis in the tilapia, Oreochromis mossambicus. Comparative Biochemistry and Physiology Part A, Molecular & Degrative Physiology, 2003, 134, 429-439.	0.8	139
36	Understanding Hypoxia-Induced Gene Expression in Early Development: In Vitro and In Vivo Analysis of Hypoxia-Inducible Factor 1-Regulated Zebra Fish Insulin-Like Growth Factor Binding Protein 1 Gene Expression. Molecular and Cellular Biology, 2006, 26, 1142-1155.	1.1	138

#	Article	IF	CITATIONS
37	Repression of Adipose Tissue Fibrosis through a PRDM16-GTF2IRD1 Complex Improves Systemic Glucose Homeostasis. Cell Metabolism, 2018, 27, 180-194.e6.	7.2	133
38	A Secreted Slit2 Fragment Regulates Adipose Tissue Thermogenesis and Metabolic Function. Cell Metabolism, 2016, 23, 454-466.	7.2	122
39	Mitophagy controls beige adipocyte maintenance through a Parkin-dependent and UCP1-independent mechanism. Science Signaling, 2018, 11, .	1.6	116
40	Regulation of Early Adipose Commitment by Zfp521. PLoS Biology, 2012, 10, e1001433.	2.6	114
41	Dual mode of cortisol action on GH/IGF-I/IGF binding proteins in the tilapia, Oreochromis mossambicus. Journal of Endocrinology, 2003, 178, 91-99.	1.2	94
42	A Novel Therapeutic Approach to Treating Obesity through Modulation of $TGF\hat{l}^2$ Signaling. Endocrinology, 2012, 153, 3133-3146.	1.4	94
43	ThermoMouse: An In Vivo Model to Identify Modulators of UCP1 Expression in Brown Adipose Tissue. Cell Reports, 2014, 9, 1584-1593.	2.9	94
44	A Synergistic Antiobesity Effect by a Combination of Capsinoids and Cold Temperature Through Promoting Beige Adipocyte Biogenesis. Diabetes, 2016, 65, 1410-1423.	0.3	90
45	JMJD1A is a signal-sensing scaffold that regulates acute chromatin dynamics via SWI/SNF association for thermogenesis. Nature Communications, 2015, 6, 7052.	5.8	87
46	Isolation and Differentiation of Stromal Vascular Cells to Beige/Brite Cells. Journal of Visualized Experiments, 2013, , .	0.2	86
47	Identification of the growth hormone receptor in an advanced teleost, the tilapia (Oreochromis) Tj ETQq1 1 0.7 Endocrinology, 2004, 181, 65-76.	84314 rgB ⁷	
48	Effects of environmental osmolality on release of prolactin, growth hormone and ACTH from the tilapia pituitary. General and Comparative Endocrinology, 2002, 128, 91-101.	0.8	81
49	cDNA Cloning of Two Gonadotropin \hat{l}^2 Subunits (GTH- \hat{l}^2 and - $\hat{l}\hat{l}^2$) and Their Expression Profiles during Gametogenesis in the Japanese Flounder (Paralichthys olivaceus). General and Comparative Endocrinology, 2001, 122, 117-129.	0.8	78
50	Relevance of brown adipose tissue in infancy and adolescence. Pediatric Research, 2013, 73, 3-9.	1.1	74
51	Phosphoproteomics Identifies CK2 as a Negative Regulator of Beige Adipocyte Thermogenesis and Energy Expenditure. Cell Metabolism, 2015, 22, 997-1008.	7.2	74
52	Mitochondrial homeostasis in adipose tissue remodeling. Science Signaling, 2017, 10, .	1.6	74
53	Role of IGF signaling in catch-up growth and accelerated temporal development in zebrafish embryos in response to oxygen availability. Development (Cambridge), 2011, 138, 777-786.	1.2	73
54	Actomyosin-Mediated Tension Orchestrates Uncoupled Respiration in Adipose Tissues. Cell Metabolism, 2018, 27, 602-615.e4.	7.2	70

#	Article	IF	Citations
55	Histone demethylase JMJD1A coordinates acute and chronic adaptation to cold stress via thermogenic phospho-switch. Nature Communications, 2018, 9, 1566.	5.8	68
56	Immunomodulatory effects of prolactin and growth hormone in the tilapia, Oreochromis mossambicus. Journal of Endocrinology, 2002, 173, 483-492.	1,2	60
57	Title is missing!. Fish Physiology and Biochemistry, 2001, 25, 221-230.	0.9	58
58	Advances in the understanding of adipose tissue biology. Nature Reviews Endocrinology, 2017, 13, 69-70.	4.3	58
59	Bacteroides spp. promotes branched-chain amino acid catabolism in brown fat and inhibits obesity. IScience, 2021, 24, 103342.	1.9	58
60	A combination of exercise and capsinoid supplementation additively suppresses diet-induced obesity by increasing energy expenditure in mice. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E315-E323.	1.8	52
61	Zinc transporter ZIP13 suppresses beige adipocyte biogenesis and energy expenditure by regulating C/EBP-Î ² expression. PLoS Genetics, 2017, 13, e1006950.	1.5	50
62	Mitochondrial lipoylation integrates age-associated decline in brown fat thermogenesis. Nature Metabolism, 2019, 1, 886-898.	5.1	50
63	Modulation of PGC-1 Coactivator Pathways in Brown Fat Differentiation through LRP130. Journal of Biological Chemistry, 2008, 283, 31960-31967.	1.6	49
64	The pesticide chlorpyrifos promotes obesity by inhibiting diet-induced thermogenesis in brown adipose tissue. Nature Communications, 2021, 12, 5163.	5.8	47
65	An Evolutionarily Conserved uORF Regulates PGC1α and Oxidative Metabolism in Mice, Flies, and Bluefin Tuna. Cell Metabolism, 2019, 30, 190-200.e6.	7.2	45
66	Branched-chain \hat{l} ±-ketoacids are preferentially reaminated and activate protein synthesis in the heart. Nature Communications, 2021, 12, 1680.	5.8	45
67	Effects of insulin-like growth factors (IGF-I and -II) on growth hormone and prolactin release and gene expression in euryhaline tilapia, Oreochromis mossambicus. General and Comparative Endocrinology, 2002, 127, 223-231.	0.8	39
68	Wireless optogenetics protects against obesity via stimulation of non-canonical fat thermogenesis. Nature Communications, 2020, 11, 1730.	5.8	39
69	Obesity-Linked Phosphorylation of SIRT1 by Casein Kinase 2 Inhibits Its Nuclear Localization and Promotes Fatty Liver. Molecular and Cellular Biology, 2017, 37, .	1.1	37
70	Obesity is associated with depot-specific alterations in adipocyte DNA methylation and gene expression. Adipocyte, 2017, 6, 124-133.	1.3	34
71	Insulinâ€like growth factorâ€binding proteinâ€1: an evolutionarily conserved fine tuner of insulinâ€like growth factor action under catabolic and stressful conditions. Journal of Fish Biology, 2007, 71, 309-325.	0.7	33
72	In vitro effects of cortisol on the release and gene expression of prolactin and growth hormone in the tilapia, Oreochromis mossambicus. General and Comparative Endocrinology, 2004, 135, 116-125.	0.8	32

#	Article	IF	Citations
73	Changes in plasma concentrations of immunoreactive ouabain in the tilapia in response to changing salinity: is ouabain a hormone in fish?. General and Comparative Endocrinology, 2004, 135, 90-99.	0.8	30
74	Mitochondrial Activity in Human White Adipocytes Is Regulated by the Ubiquitin Carrier Protein 9/microRNA-30a Axis. Journal of Biological Chemistry, 2016, 291, 24747-24755.	1.6	30
75	Comparative analysis of microRNA expression in mouse and human brown adipose tissue. BMC Genomics, 2015, 16, 820.	1.2	29
76	The major cap-binding protein elF4E regulates lipid homeostasis and diet-induced obesity. Nature Metabolism, 2021, 3, 244-257.	5.1	29
77	The regulation of glucose and lipid homeostasis via <scp>PLTP</scp> as a mediator of <scp>BAT</scp> –liver communication. EMBO Reports, 2020, 21, e49828.	2.0	28
78	Mammary alveolar epithelial cells convert to brown adipocytes in postâ€lactating mice. Journal of Cellular Physiology, 2017, 232, 2923-2928.	2.0	26
79	Prolactin receptor and proliferating/apoptotic cells in esophagus of the Mozambique tilapia (Oreochromis mossambicus) in fresh water and in seawater. General and Comparative Endocrinology, 2007, 152, 326-331.	0.8	22
80	Multifaceted Roles of Beige Fat in Energy Homeostasis Beyond UCP1. Endocrinology, 2018, 159, 2545-2553.	1.4	22
81	Adrenergic-Independent Signaling via CHRNA2 Regulates Beige Fat Activation. Developmental Cell, 2020, 54, 106-116.e5.	3.1	22
82	Changes in the levels of mRNA coding for gonadotropin Ibeta and Ilbeta subunits during vitellogenesis in the common Japanese conger Conger myriaster. Fisheries Science, 2001, 67, 1053-1062.	0.7	19
83	Intramuscular Brown Fat Activation Decreases Muscle Atrophy and Fatty Infiltration and Improves Gait After Delayed Rotator Cuff Repair in Mice. American Journal of Sports Medicine, 2020, 48, 1590-1600.	1.9	19
84	Burning Fat and Building Bone by FSH Blockade. Cell Metabolism, 2017, 26, 285-287.	7.2	17
85	Lightening up a notch: Notch regulation of energy metabolism. Nature Medicine, 2014, 20, 811-812.	15. 2	16
86	Engineering Fat Cell Fate to Fight Obesity and Metabolic Diseases. Keio Journal of Medicine, 2015, 64, 65-65.	0.5	15
87	Metabolic flexibility via mitochondrial BCAA carrier SLC25A44 is required for optimal fever. ELife, 2021, 10, .	2.8	15
88	Boström et al. reply. Nature, 2012, 488, E10-E11.	13.7	14
89	\hat{I}^2 3-Adrenergic receptor agonist treats rotator cuff fatty infiltration by activating beige fat in mice. Journal of Shoulder and Elbow Surgery, 2021, 30, 373-386.	1.2	14
90	Physiological concentrations of ouabain rapidly inhibit prolactin release from the tilapia pituitary. General and Comparative Endocrinology, 2005, 143, 240-250.	0.8	13

#	Article	IF	Citations
91	Confounding issues in the â€~humanized' BAT of mice. Nature Metabolism, 2020, 2, 303-304.	5.1	12
92	Cellular heterogeneity in brown adipose tissue. Journal of Clinical Investigation, 2019, 130, 65-67.	3.9	11
93	Oil does more than light the lamp: The multifaceted role of lipids in thermogenic fat. Developmental Cell, 2021, 56, 1408-1416.	3.1	10
94	<scp>AAV</scp> â€mediated gene therapy as a strategy to fight obesity and metabolic diseases. EMBO Molecular Medicine, 2018, 10, .	3.3	8
95	Kruppelâ€like factorÂ15 regulates fuel switching between glucose and fatty acids in brown adipocytes. Journal of Diabetes Investigation, 2021, 12, 1144-1151.	1.1	8
96	Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) activity is required for $V(D)J$ recombination. Journal of Experimental Medicine, 2021, 218, .	4.2	8
97	A new way to ignite thermogenesis in human adipose tissue. Nature Reviews Endocrinology, 2020, 16, 475-476.	4.3	6
98	Is thermogenesis really needed for brown adipose tissue–mediated metabolic benefit?. Journal of Clinical Investigation, 2022, 132, .	3.9	6
99	Gonadal development and expression profiles of gonadotropin genes in wild sea conger, Ariosoma meeki. Fish Physiology and Biochemistry, 2003, 28, 95-96.	0.9	5
100	Detouring adrenergic stimulation to induce adipose thermogenesis. Nature Reviews Endocrinology, 2021, 17, 579-580.	4.3	3
101	Identification of growth hormone receptor in the ovary of tilapia, Oreochromis mossambicus. Fish Physiology and Biochemistry, 2003, 28, 211-212.	0.9	2
102	Naa10P puts a brake on PGC1 \hat{l}_{\pm} and fat browning. Nature Structural and Molecular Biology, 2019, 26, 849-851.	3.6	2
103	The epigenetic regulation of adipose tissue plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	2
104	PDGFA Makes Thin Skin Thicker: Molecular Regulation of Adipose Progenitor Maintenance. Cell Stem Cell, 2016, 19, 675-676.	5.2	1
105	Bioenergetics matter to metabolic healthâ€"from a fat progenitor view. Cell Stem Cell, 2021, 28, 589-591.	5.2	1
106	Title is missing!. Kagaku To Seibutsu, 2012, 50, 11-13.	0.0	0
107	Expression profiles of two gonadotropin \hat{l}^2 subunit (GTH-I \hat{l}^2 and GTH-II \hat{l}^2) gene during gametogenesis in the Japanese flounder, <i>Paralichthys olivaceus</i>. Fisheries Science, 2002, 68, 1265-1266.	0.7	0
108	Abstract 2673: Inhibition of fatty-acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer., 2016,,.		0

#	Article	IF	CITATIONS
109	Abstract 2398: Tumor cell-adipocyte gap junctions activate lipolysis in breast cancer. , 2018, , .		O
110	Activation of UCP1-Independent Ca2+ Cycling Thermogenesis by Wireless Optogenetics. Methods in Molecular Biology, 2022, 2448, 131-139.	0.4	0