
Ping Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7502632/publications.pdf Version: 2024-02-01

DINC SHEN

#	Article	IF	CITATIONS
1	Improved photovoltaic properties of copolymer donors by regulating alkyl and alkylsilyl side chains. Dyes and Pigments, 2022, 197, 109842.	3.7	2
2	Balancing the Voc-Jsc trade-off in polymer solar cells based on 2-(benzoxazol-2-yl)-acetonitrile end-capped small-molecule acceptors through asymmetry and halogenation of end groups. Organic Electronics, 2022, 102, 106446.	2.6	2
3	Hybrid Dihalogenation on the End Group of Indacenodithieno[3,2- <i>b</i>]thiophene-Based Small-Molecule Acceptors Enables Efficient Polymer Solar Cells Processed from Nonhalogenated Solvents and Additives. ACS Applied Energy Materials, 2022, 5, 8731-8742.	5.1	2
4	Effect of aromatic ï€-bridges on molecular structures and optoelectronic properties of A-ï€-D-ï€-A small molecular acceptors based on indacenodithiophene. Organic Electronics, 2021, 89, 106015.	2.6	8
5	Preventing isomerization of the fused-ring core by introducing a methyl group for efficient non-fullerene acceptors. Journal of Materials Chemistry C, 2021, 9, 13357-13365.	5.5	3
6	Synergetic Effect of Side-Chain Engineering of Polymer Donors and Conformation Tuning of Small-Molecule Acceptors on Molecular Properties, Morphology, and Photovoltaic Performance. ACS Applied Energy Materials, 2021, 4, 8117-8129.	5.1	6
7	Effect of Arylmethylene Substitutions on Molecular Structure, Optoelectronic Properties and Photovoltaic Performance of Dithienocyclopentafluoreneâ€Based Smallâ€Molecule Acceptors. Chemistry - A European Journal, 2021, 27, 14508-14519.	3.3	5
8	Balancing photovoltaic parameters to enhance device performance of fluorene-fused heptacyclic small-molecule acceptors through varying terminal groups and polymer donors. Journal of Materials Chemistry C, 2021, 9, 3295-3306.	5.5	10
9	Development of new nonacyclic small-molecule acceptors involving two benzo[1,2-b:4,5-bâ€2]dithiophene moieties for efficient polymer solar cells. Synthetic Metals, 2021, 282, 116922.	3.9	0
10	A small-molecule/fullerene acceptor alloy: a powerful tool to enhance the device efficiency and thermal stability of ternary polymer solar cells. Journal of Materials Chemistry C, 2020, 8, 11223-11238.	5.5	21
11	Development of A–DAâ€2D–A Small-Molecular Acceptors Based on a 6,12-Dihydro-diindolo[1,2- <i>b</i> :10,20- <i>e</i>]pyrazine Unit for Efficient As-Cast Polymer Solar Cells. Journal of Physical Chemistry C, 2020, 124, 21366-21377.	3.1	7
12	Simultaneously improving the photovoltaic parameters of organic solar cells <i>via</i> isomerization of benzo[<i>b</i>]benzo[4,5]thieno[2,3- <i>d</i>]thiophene-based octacyclic non-fullerene acceptors. Journal of Materials Chemistry A, 2020, 8, 9684-9692.	10.3	28
13	Manipulating electronic energy levels of wide-bandgap D–A copolymers via side-chain engineering to realize high open-circuit voltage polymer solar cells. Synthetic Metals, 2020, 265, 116413.	3.9	7
14	Conjugated side-chain optimization of indacenodithiophene-based nonfullerene acceptors for efficient polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 10028-10038.	5.5	18
15	Effects of the length and steric hindrance of ï€-bridge on molecular configuration and optoelectronic properties of diindole[3,2-b:4,5-b′]pyrrole-based small molecules. Dyes and Pigments, 2019, 171, 107687.	3.7	6
16	Low-bandgap D-A1-D-A2 type copolymers based on TPTI unit for efficient fullerene and nonfullerene polymer solar cells. Polymer, 2019, 182, 121850.	3.8	3
17	Nonhalogenated-Solvent-Processed Efficient Polymer Solar Cells Enabled by Medium-Band-Gap Aâ°ï€â€"Dâ^ï€â€"A Small-Molecule Acceptors Based on a 6,12-Dihydro-diindolo[1,2- <i>b</i> :10,20- <i>e</i>]pyrazine Unit. ACS Applied Materials & Interfaces, 2019, 11, 48134-48146.	8.0	8
18	STFTYT: A simple and broadly absorbing small molecule for efficient organic solar cells with a very low energy loss. Organic Electronics, 2018, 57, 45-52.	2.6	6

PING SHEN

#	Article	IF	CITATIONS
19	Photovoltaic molecules based on vinylene-bridged oligothiophene applied for bulk-heterojunction organic solar cells. Journal of Energy Chemistry, 2018, 27, 426-431.	12.9	0
20	Achieving efficient thick active layer and large area ternary polymer solar cells by incorporating a new fused heptacyclic non-fullerene acceptor. Journal of Materials Chemistry A, 2018, 6, 20313-20326.	10.3	34
21	Fluorobenzotriazoleâ€Based Mediumâ€Bandgap Conjugated D–A Copolymers for Applications to Fullereneâ€Based and Nonfullerene Polymer Solar Cells. Journal of Polymer Science Part A, 2018, 56, 2330-2343.	2.3	5
22	Synthesis and optoelectronic property manipulation of conjugated polymer photovoltaic materials based on benzo[d]-dithieno[3,2-b;2′,3′-f]azepine. Polymer, 2018, 147, 184-195.	3.8	3
23	Development of Spiro[cyclopenta[1,2- <i>b</i> :5,4- <i>b</i> ′]dithiophene-4,9′-fluorene]-Based A-π-D-π-A Small Molecules with Different Acceptor Units for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 4614-4625.	8.0	49
24	Effects of alkoxy substitution on molecular structure, physicochemical and photovoltaic properties of 2D-conjugated polymers based on benzo[1,2- b :4,5- b â€2]dithiophene and fluorinated benzothiadiazole. Chemical Physics Letters, 2017, 672, 63-69.	2.6	7
25	Impact of the number of fluorine atoms on crystalline, physicochemical and photovoltaic properties of low bandgap copolymers based on 1,4-dithienylphenylene and diketopyrrolopyrrole. Polymer, 2017, 125, 217-226.	3.8	14
26	Impact of benzothiadiazole position on the photovoltaic properties of solution-processable organic molecule materials. Synthetic Metals, 2017, 234, 47-52.	3.9	1
27	Synthesis and Optoelectronic Properties of Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> @extrms and Optoelectronic Properties of Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> @extrms and Physics, 2016, 217, 1586-1599.	2.2	9
28	Synthesis and photovoltaic properties of alkylthiothienyl-substituted benzo[1,2-b:4,5-bâ€2]dithiophene D–A copolymers with different accepting units. Synthetic Metals, 2016, 211, 121-131.	3.9	17
29	Side-chain engineering of benzodithiophene–thiophene copolymers with conjugated side chains containing the electron-withdrawing ethylrhodanine group. Journal of Materials Chemistry A, 2015, 3, 12005-12015.	10.3	25
30	Effect of fluorination on the performance of poly(thieno[2,3-f]benzofuran-co-benzothiadiazole) derivatives. RSC Advances, 2015, 5, 30145-30152.	3.6	10
31	Synthesis and photovoltaic properties of 4,9-dithien-2′-yl-2,1,3-naphthothiadiazole-based D-A copolymers. Polymer, 2015, 79, 119-127.	3.8	7
32	Synthesis and optoelectronic properties of new D–A copolymers based on fluorinated benzothiadiazole and benzoselenadiazole. Polymer Chemistry, 2014, 5, 567-577.	3.9	48
33	Effects of donor unit and Ï€â€bridge on photovoltaic properties of D–A copolymers based on benzo[1,2â€ <i>b</i> :4,5â€ <i>c</i> ']â€dithiopheneâ€4,8â€dione acceptor unit. Journal of Polymer Science Part A 2014, 52, 1929-1940.	, 2.3	28
34	Effects of the acceptors in triphenylamine-based D–A′–π–A dyes on photophysical, electrochemical, and photovoltaic properties. Journal of Power Sources, 2014, 246, 831-839.	7.8	37
35	Side chain effect on photovoltaic properties of D–A copolymers based on benzodithiophene and thiophene-substituted bithiazole. Organic Electronics, 2013, 14, 3152-3162.	2.6	20
36	Enhancing Photovoltaic Performance of Copolymers Containing Thiophene Unit with D–A Conjugated Side Chain by Rational Molecular Design. Macromolecules, 2013, 46, 9575-9586.	4.8	66

PING SHEN

#	Article	IF	CITATIONS
37	Bandgap and Molecularâ€Energyâ€Level Control of Conjugatedâ€Polymer Photovoltaic Materials Based on 6,12â€Dihydroâ€diindeno[1,2â€ <i>b</i> ;10,20â€ <i>e</i>]pyrazine. Macromolecular Chemistry and Physics, 201 214, 1147-1157.	.3,2.2	9
38	Solution-Processable Organic Molecule Photovoltaic Materials with Bithienyl-benzodithiophene Central Unit and Indenedione End Groups. Chemistry of Materials, 2013, 25, 2274-2281.	6.7	180
39	Synthesis and photovoltaic performances of conjugated copolymers with 4,7-dithien-5-yl-2,1,3-benzothiadiazole and di(p-tolyl)phenylamine side groups. Journal of Materials Chemistry, 2012, 22, 22913.	6.7	26
40	Development of a new diindenopyrazine–benzotriazole copolymer for multifunctional application in organic field-effect transistors, polymer solar cells and light-emitting diodes. Organic Electronics, 2012, 13, 1671-1679.	2.6	21
41	Phenylenevinylene copolymers of dihexylthienylbenzothiadiazole and triphenylamine or tetraphenylbenzidine: synthesis, characterization and photovoltaic properties. Journal of Materials Science, 2012, 47, 5706-5714.	3.7	4
42	Development of a new benzo(1,2-b:4,5-b′)dithiophene-based copolymer with conjugated dithienylbenzothiadiazole–vinylene side chains for efficient solar cells. Chemical Communications, 2011, 47, 9381.	4.1	65
43	Flexible Counter Electrodes Based on Mesoporous Carbon Aerogel for High-Performance Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 22615-22621.	3.1	61
44	Effects of aromatic π-conjugated bridges on optical and photovoltaic properties of N,N-diphenylhydrazone-based metal-free organic dyes. Organic Electronics, 2011, 12, 1992-2002.	2.6	57
45	Low-cost quasi-solid-state dye-sensitized solar cells based on a metal-free organic dye and a carbon aerogel counter electrode. Journal of Materials Science, 2011, 46, 7482-7488.	3.7	11
46	Low band gap copolymers consisting of porphyrins, thiophenes, and 2,1,3â€benzothiadiazole moieties for bulk heterojunction solar cells. Journal of Polymer Science Part A, 2011, 49, 2685-2692.	2.3	46
47	Synthesis and photovoltaic properties of copolymers based on benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> â€2]dithiophene and thiophene with electronâ€withdrawing side chains. Journal of Polymer Science Part A, 2011, 49, 3604-3614.	2.3	19
48	Synthesis, characterization, and photophysical properties of novel poly(<i>p</i> â€phenylene vinylene) derivatives with conjugated thiophene as side chains. Journal of Applied Polymer Science, 2011, 120, 3387-3394.	2.6	8
49	Efficient triphenylamine-based dyes featuring dual-role carbazole, fluorene and spirobifluorene moieties. Organic Electronics, 2011, 12, 125-135.	2.6	65
50	High Molar Extinction Coefficient Branchlike Organic Dyes Containing Di(<i>p</i> -tolyl)phenylamine Donor for Dye-Sensitized Solar Cells Applications. Journal of Physical Chemistry C, 2010, 114, 3280-3286.	3.1	110
51	Synthesis and photovoltaic properties of polythiophene stars with porphyrin core. Journal of Materials Chemistry, 2010, 20, 1140-1146.	6.7	56
52	Molecular design of organic dyes based on vinylene hexylthiophene bridge for dye-sensitized solar cells. Science in China Series B: Chemistry, 2009, 52, 1198-1209.	0.8	13
53	Synthesis and optoelectronic properties of liquidâ€crystalline copolymers based on fluorene and triphenylamineâ€containing oligo(<i>p</i> â€phenylenevinylene) derivatives for white light emission. Journal of Polymer Science Part A, 2009, 47, 3296-3308.	2.3	14
54	Synthesis and white electroluminescent properties of multicomponent copolymers containing polyfluorene, oligo(phenylenevinylene), and porphyrin derivatives. Journal of Polymer Science Part A, 2009, 47, 5291-5303.	2.3	9

PING SHEN

#	Article	IF	CITATIONS
55	Synthesis and photovoltaic properties of poly(p-phenylenevinylene) derivatives with two triphenylamine and bithiophene conjugated side chains. European Polymer Journal, 2009, 45, 2726-2731.	5.4	13
56	Efficient triphenylamine dyes for solar cells: Effects of alkyl-substituents and π-conjugated thiophene unit. Dyes and Pigments, 2009, 83, 187-197.	3.7	118
57	Effect of 3D Ï€â^'Ï€ Stacking on Photovoltaic and Electroluminescent Properties in Triphenylamine-containing Poly(p-phenylenevinylene) Derivatives. Macromolecules, 2008, 41, 5716-5722.	4.8	62