Ling Shuai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7502398/publications.pdf

Version: 2024-02-01

		567281	580821
36	714	15	25 g-index
papers	citations	h-index	g-index
37	37	37	705
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature, 2012, 490, 407-411.	27.8	149
2	Genetic Modification and Screening in Rat Using Haploid Embryonic Stem Cells. Cell Stem Cell, 2014, 14, 404-414.	11.1	85
3	Generation and Application of Mouse-Rat Allodiploid Embryonic Stem Cells. Cell, 2016, 164, 279-292.	28.9	46
4	Parthenogenetic haploid embryonic stem cells produce fertile mice. Cell Research, 2013, 23, 1330-1333.	12.0	35
5	Anti-inflammatory <i>neo</i> -Clerodane Diterpenoids from <i>Ajuga pantantha</i> . Journal of Natural Products, 2020, 83, 894-904.	3.0	25
6	Derivation of Haploid Trophoblast Stem Cells via Conversion InÂVitro. IScience, 2019, 11, 508-518.	4.1	24
7	NO inhibitory diterpenoids as potential anti-inflammatory agents from Euphorbia antiquorum. Bioorganic Chemistry, 2019, 92, 103237.	4.1	23
8	Diterpenoids from the leaves of Casearia kurzii showing cytotoxic activities. Bioorganic Chemistry, 2020, 98, 103741.	4.1	23
9	Bioactive Diterpenoids from the Stems of <i>Euphorbia antiquorum</i> . Journal of Natural Products, 2019, 82, 1634-1644.	3.0	21
10	An active heteropolysaccharide from the rinds of Garcinia mangostana Linn.: Structural characterization and immunomodulation activity evaluation. Carbohydrate Polymers, 2020, 235, 115929.	10.2	21
11	Inhibition of Apoptosis Reduces Diploidization of Haploid Mouse Embryonic Stem Cells during Differentiation. Stem Cell Reports, 2020, 15, 185-197.	4.8	20
12	Durable pluripotency and haploidy in epiblast stem cells derived from haploid embryonic stem cellsin vitro. Journal of Molecular Cell Biology, 2015, 7, 326-337.	3.3	19
13	Efficient Production of Fluorescent Transgenic Rats using the piggyBac Transposon. Scientific Reports, 2016, 6, 33225.	3.3	19
14	A versatile genetic tool: haploid cells. Stem Cell Research and Therapy, 2017, 8, 197.	5.5	19
15	The first cell fate decision in pre-implantation mouse embryos. Cell Regeneration, 2019, 8, 51-57.	2.6	19
16	Dppa3 is critical for Lin28a-regulated ES cells naÃ⁻ve–primed state conversion. Journal of Molecular Cell Biology, 2019, 11, 474-488.	3.3	19
17	Genetic screening and multipotency in rhesus monkey haploid neural progenitor cells. Development (Cambridge), 2018, 145, .	2.5	18
18	Haploid embryonic stem cells serve as a new tool for mammalian genetic study. Stem Cell Research and Therapy, 2014, 5, 20.	5 . 5	13

#	Article	IF	CITATIONS
19	Highâ€throughput screening in postimplantation haploid epiblast stem cells reveals Hs3st3b1 as a modulator for reprogramming. Stem Cells Translational Medicine, 2021, 10, 743-755.	3.3	13
20	Derivation of Haploid Neural Stem Cell Lines by Selection for a <i>Pax6-GFP</i> Reporter. Stem Cells and Development, 2018, 27, 479-487.	2.1	12
21	Rif1 and Hmgn3 regulate the conversion of murine trophoblast stem cells. Cell Reports, 2022, 38, 110570.	6.4	12
22	Histone demethylase Kdm2a regulates germ cell genes and endogenous retroviruses in embryonic stem cells. Epigenomics, 2019, 11, 751-766.	2.1	11
23	Clerodane Diterpenoids Isolated from the Leaves of <i>Casearia graveolens</i> . Journal of Natural Products, 2020, 83, 36-44.	3.0	11
24	Germline specification from pluripotent stem cells. Stem Cell Research and Therapy, 2022, 13, 74.	5.5	10
25	Cytotoxic diterpenoids as potential anticancer agents from the twigs of Casearia kurzii. Bioorganic Chemistry, 2019, 89, 102995.	4.1	9
26	Extractive from Hypericum ascyron L promotes serotonergic neuronal differentiation in vitro. Stem Cell Research, 2018, 31, 42-50.	0.7	7
27	Generation of Mammalian Offspring by Haploid Embryonic Stem Cells Microinjection. Current Protocols in Stem Cell Biology, 2014, 31, 1A.6.1-15.	3.0	5
28	Genome $\hat{a} \in s$ cale screening in a rat haploid system identifies $\langle i \rangle$ Thop $1 \langle i \rangle$ as a modulator of pluripotency exit. Cell Proliferation, 2022, 55, e13209.	5.3	5
29	Co-participation of paternal and maternal genomes before the blastocyst stage is not required for full-term development of mouse embryos: FigureÂ1. Journal of Molecular Cell Biology, 2015, 7, 486-488.	3.3	4
30	CRISPR/Cas9-edited Pax6-GFP reporter system facilitates the generationÂof mouse neural progenitor cells during differentiation. Journal of Genetics and Genomics, 2018, 45, 277-280.	3.9	4
31	The milestone of genetic screening: Mammalian haploid cells. Computational and Structural Biotechnology Journal, 2020, 18, 2471-2479.	4.1	4
32	Three dimensional collagen scaffolds promote iPSC induction with higher pluripotency. Protein and Cell, 2016, 7, 844-848.	11.0	3
33	Rapid generation of murine haploid-induced trophoblast stem cells via a Tet-on system. STAR Protocols, 2021, 2, 100881.	1.2	3
34	Genome-wide screening in the haploid system reveals Slc25a43 as a target gene of oxidative toxicity. Cell Death and Disease, 2022, 13, 284.	6.3	3
35	Derivation of Haploid Trophoblast Stem Cells <i>Via</i> Conversion <i>In Vitro</i> . SSRN Electronic Journal, 0, , .	0.4	0
36	Homozygous Loss of Septin12, but not its Haploinsufficiency, Leads to Male Infertility and Fertilization Failure. Frontiers in Cell and Developmental Biology, 2022, 10, 850052.	3.7	0