Philip R Dormitzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7502351/publications.pdf

Version: 2024-02-01

69 papers 28,644 citations

47 h-index

46984

71 g-index

80 all docs

80 docs citations

80 times ranked 33806 citing authors

#	Article	IF	CITATIONS
1	Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. New England Journal of Medicine, 2020, 383, 2603-2615.	13.9	11,472
2	Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. New England Journal of Medicine, 2020, 383, 2439-2450.	13.9	2,107
3	COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature, 2020, 586, 594-599.	13.7	1,520
4	PhaseÂI/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature, 2020, 586, 589-593.	13.7	1,197
5	Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine through 6 Months. New England Journal of Medicine, 2021, 385, 1761-1773.	13.9	1,090
6	Safety, Immunogenicity, and Efficacy of the BNT162b2 Covid-19 Vaccine in Adolescents. New England Journal of Medicine, 2021, 385, 239-250.	13.9	709
7	BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature, 2021, 595, 572-577.	13.7	583
8	Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nature Medicine, 2021, 27, 620-621.	15.2	562
9	Neutralizing Activity of BNT162b2-Elicited Serum. New England Journal of Medicine, 2021, 384, 1466-1468.	13.9	528
10	Nonviral delivery of self-amplifying RNA vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14604-14609.	3.3	498
11	BNT162b vaccines protect rhesus macaques from SARS-CoV-2. Nature, 2021, 592, 283-289.	13.7	494
12	Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine–elicited human sera. Science, 2021, 371, 1152-1153.	6.0	485
13	Evaluation of the BNT162b2 Covid-19 Vaccine in Children 5 to 11 Years of Age. New England Journal of Medicine, 2022, 386, 35-46.	13.9	431
14	Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14216-14221.	3.3	402
15	Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1867-1872.	3.3	347
16	SARS-CoV-2 Neutralization with BNT162b2 Vaccine Dose 3. New England Journal of Medicine, 2021, 385, 1627-1629.	13.9	346
17	SARS Coronavirus, but Not Human Coronavirus NL63, Utilizes Cathepsin L to Infect ACE2-expressing Cells. Journal of Biological Chemistry, 2006, 281, 3198-3203.	1.6	328
18	BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants. Nature, 2021, 596, 273-275.	13.7	318

#	Article	IF	CITATIONS
19	The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO Journal, 2002, 21, 885-897.	3.5	305
20	A Cationic Nanoemulsion for the Delivery of Next-generation RNA Vaccines. Molecular Therapy, 2014, 22, 2118-2129.	3.7	255
21	Atomic model of an infectious rotavirus particle. EMBO Journal, 2011, 30, 408-416.	3.5	254
22	Structural basis for immunization with postfusion respiratory syncytial virus fusion F glycoprotein (RSV F) to elicit high neutralizing antibody titers. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9619-9624.	3.3	233
23	Preconfiguration of the antigen-binding site during affinity maturation of a broadly neutralizing influenza virus antibody. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 264-269.	3.3	227
24	Structure of Rotavirus Outer-Layer Protein VP7 Bound with a Neutralizing Fab. Science, 2009, 324, 1444-1447.	6.0	216
25	Safety and Efficacy of a Third Dose of BNT162b2 Covid-19 Vaccine. New England Journal of Medicine, 2022, 386, 1910-1921.	13.9	215
26	Nemaline Myopathy with Minicores Caused by Mutation of the CFL2 Gene Encoding the Skeletal Muscle Actin–Binding Protein, Cofilin-2. American Journal of Human Genetics, 2007, 80, 162-167.	2.6	213
27	Structural rearrangements in the membrane penetration protein of a non-enveloped virus. Nature, 2004, 430, 1053-1058.	13.7	200
28	Synthetic Generation of Influenza Vaccine Viruses for Rapid Response to Pandemics. Science Translational Medicine, 2013, 5, 185ra68.	5.8	164
29	Influenza vaccine immunology. Immunological Reviews, 2011, 239, 167-177.	2.8	146
30	Structure-based antigen design: a strategy for next generation vaccines. Trends in Biotechnology, 2008, 26, 659-667.	4.9	143
31	Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10644-10648.	3.3	135
32	Self-Amplifying mRNA Vaccines. Advances in Genetics, 2015, 89, 179-233.	0.8	130
33	Conformational States of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Ectodomain. Journal of Virology, 2006, 80, 6794-6800.	1.5	120
34	Structural vaccinology starts to deliver. Nature Reviews Microbiology, 2012, 10, 807-813.	13.6	116
35	Influenza immunization elicits antibodies specific for an egg-adapted vaccine strain. Nature Medicine, 2016, 22, 1465-1469.	15.2	104
36	BNT162b2-Elicited Neutralization against New SARS-CoV-2 Spike Variants. New England Journal of Medicine, 2021, 385, 472-474.	13.9	93

#	Article	IF	CITATIONS
37	Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nature Communications, 2022, 13, 1536.	5.8	93
38	A Cell Culture–Derived MF59-Adjuvanted Pandemic A/H7N9 Vaccine Is Immunogenic in Adults. Science Translational Medicine, 2014, 6, 234ra55.	5.8	81
39	Prefusion F Protein–Based Respiratory Syncytial Virus Immunization in Pregnancy. New England Journal of Medicine, 2022, 386, 1615-1626.	13.9	78
40	High-Resolution Molecular and Antigen Structure of the VP8* Core of a Sialic Acid-Independent Human Rotavirus Strain. Journal of Virology, 2006, 80, 1513-1523.	1.5	77
41	The Status of Vaccine Development Against the Human Cytomegalovirus. Journal of Infectious Diseases, 2020, 221, S113-S122.	1.9	73
42	Influenza: Options to Improve Pandemic Preparation. Science, 2012, 336, 1531-1533.	6.0	71
43	Assembly of Highly Infectious Rotavirus Particles Recoated with Recombinant Outer Capsid Proteins. Journal of Virology, 2006, 80, 11293-11304.	1.5	70
44	Specificity and Affinity of Sialic Acid Binding by the Rhesus Rotavirus VP8* Core. Journal of Virology, 2002, 76, 10512-10517.	1.5	68
45	Generation of a parvovirus B19 vaccine candidate. Vaccine, 2013, 31, 3872-3878.	1.7	59
46	Vaccine Efficacy in Adults in a Respiratory Syncytial Virus Challenge Study. New England Journal of Medicine, 2022, 386, 2377-2386.	13.9	54
47	A Rotavirus Spike Protein Conformational Intermediate Binds Lipid Bilayers. Journal of Virology, 2010, 84, 1764-1770.	1.5	50
48	New technologies for influenza vaccines. Human Vaccines and Immunotherapeutics, 2012, 8, 45-58.	1.4	48
49	Proteolysis of Monomeric Recombinant Rotavirus VP4 Yields an Oligomeric VP5* Core. Journal of Virology, 2001, 75, 7339-7350.	1.5	46
50	Alternative intermolecular contacts underlie the rotavirus VP5* two- to three-fold rearrangement. EMBO Journal, 2006, 25, 1559-1568.	3.5	46
51	Prefusion structure of human cytomegalovirus glycoprotein B and structural basis for membrane fusion. Science Advances, 2021, 7, .	4.7	45
52	VP5* Rearranges when Rotavirus Uncoats. Journal of Virology, 2009, 83, 11372-11377.	1.5	43
53	The path to an RSV vaccine. Current Opinion in Virology, 2013, 3, 332-342.	2.6	43
54	Effect of Mutations in VP5* Hydrophobic Loops on Rotavirus Cell Entry. Journal of Virology, 2010, 84, 6200-6207.	1.5	40

#	Article	IF	CITATIONS
55	A Monomeric Uncleaved Respiratory Syncytial Virus F Antigen Retains Prefusion-Specific Neutralizing Epitopes. Journal of Virology, 2014, 88, 11802-11810.	1.5	38
56	The effect of SARS-CoV-2 D614G mutation on BNT162b2 vaccine-elicited neutralization. Npj Vaccines, 2021, 6, 44.	2.9	36
57	Anomalously low endemic goiter prevalence among Efe pygmies. American Journal of Physical Anthropology, 1989, 78, 527-531.	2.1	29
58	Cross-Linking of Rotavirus Outer Capsid Protein VP7 by Antibodies or Disulfides Inhibits Viral Entry. Journal of Virology, 2011, 85, 10509-10517.	1.5	24
59	A randomized study to evaluate safety and immunogenicity of the BNT162b2 COVID-19 vaccine in healthy Japanese adults. Nature Communications, 2021, 12, 7105.	5.8	22
60	Modeling SARS-CoV-2: Comparative Pathology in Rhesus Macaque and Golden Syrian Hamster Models. Toxicologic Pathology, 2022, 50, 280-293.	0.9	21
61	Saccharomyces cerevisiae -derived virus-like particle parvovirus B19 vaccine elicits binding and neutralizing antibodies in a mouse model for sickle cell disease. Vaccine, 2017, 35, 3615-3620.	1.7	18
62	Human RNA Polymerase I-Driven Reverse Genetics for Influenza A Virus in Canine Cells. Journal of Virology, 2010, 84, 3721-3725.	1.5	15
63	Bringing influenza vaccines into the 21st century. Human Vaccines and Immunotherapeutics, 2014, 10, 600-604.	1.4	14
64	H1N1: Can a Pandemic Cycle Be Broken?. Science Translational Medicine, 2010, 2, 24ps14.	5.8	6
65	Learning from the 2009 H1N1 pandemic: prospects for more broadly effective influenza vaccines. Journal of Molecular Cell Biology, 2011, 3, 144-146.	1.5	4
66	BNT162b2-elicited neutralization of Delta plus, Lambda, Mu, B.1.1.519, and Theta SARS-CoV-2 variants. Npj Vaccines, 2022, 7, 41.	2.9	4
67	Novel Surrogate Neutralizing Assay Supports Parvovirus B19 Vaccine Development for Children with Sickle Cell Disease. Vaccines, 2021, 9, 860.	2.1	2
68	Neutralizing Antibodies to Human Cytomegalovirus Recombinant Proteins Reduce Infection in an Ex Vivo Model of Developing Human Placentas. Vaccines, 2022, 10, 1074.	2.1	2
69	Building an insurance against modern pandemics. Current Opinion in Investigational Drugs, 2010, 11 , $126-30$.	2.3	1