José MarÃ-a RodrÃ-guez-Izquierdo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7502251/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The interpretation of HREM images of supported metal catalysts using image simulation: profile view images. Ultramicroscopy, 1998, 72, 135-164.	1.9	154
2	Behaviour of rare earth sesquioxides exposed to atmospheric carbon dioxide and water. Reactivity of Solids, 1987, 4, 23-40.	0.3	129
3	Reversibility of hydrogen chemisorption on a ceria-supported rhodium catalyst. Journal of Catalysis, 1992, 137, 1-11.	6.2	129
4	Application of the sol-gel methods to catalyst preparation. Journal of Non-Crystalline Solids, 1992, 147-148, 724-738.	3.1	121
5	Microstructural and chemical properties of ceria-supported rhodium catalysts reduced at 773 K. The Journal of Physical Chemistry, 1993, 97, 4118-4123.	2.9	108
6	Study of some aspects of the reactivity of La2O3 with CO2 and H2O. Journal of Materials Science, 1985, 20, 537-541.	3.7	103
7	Extension of preparation methods employed with ceramic materials to carbon honeycomb monoliths. Carbon, 2004, 42, 3251-3254.	10.3	90
8	High-resolution electron microscopy investigation of metal–support interactions in Rh/TiO2. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2799-2809.	1.7	86
9	Thermal evolution of a sample of La2O3 exposed to the atmosphere. Thermochimica Acta, 1983, 66, 139-145.	2.7	74
10	Protection against corrosion in marine environments of AA5083 Al–Mg alloy by lanthanide chlorides. Journal of Alloys and Compounds, 1997, 250, 455-460.	5.5	73
11	Characterization of La2O3/SiO2Mixed Oxide Catalyst Supports. Journal of Catalysis, 1999, 183, 53-62.	6.2	67
12	Producing C-S-H gel by reaction between silica oligomers and portlandite: A promising approach to repair cementitious materials. Cement and Concrete Research, 2020, 130, 106008.	11.0	61
13	Reversible changes in the redox behaviour of a Ce0.68Zr0.32O2 mixed oxide: effect of alternating the re-oxidation temperature after reduction at 1223 K. Chemical Communications, 1999, , 149-150.	4.1	59
14	Comments on "Redox Processes on Pure Ceria and Rh/CeO2 Catalyst Monitored by X-ray Absorption (Fast Acquisition Mode). The Journal of Physical Chemistry, 1995, 99, 11794-11796.	2.9	58
15	Oxygen buffering capacity of mixed cerium terbium oxide: a new material with potential applications in three-way catalysts. Chemical Communications, 1997, , 1545-1546.	4.1	55
16	Cerium–terbium mixed oxides as alternative components for three-way catalysts: a comparative study of Pt/CeTbOx and Pt/CeO2 model systems. Catalysis Today, 1999, 53, 607-612.	4.4	51
17	Image simulation and experimental HREM study of the metal dispersion in Rh/CeO2 catalysts. Influence of the reduction/reoxidation conditions. Applied Catalysis B: Environmental, 1998, 16, 127-138.	20.2	50
18	Metal-support interaction phenomena in rhodium/ceria and rhodium/titania catalysts: Comparative study by high-resolution transmission electron spectroscopy. Applied Catalysis A: General, 1993, 99, 1-8.	4.3	46

#	Article	IF	CITATIONS
19	Highly stable ceria-zirconia-yttria supported Ni catalysts for syngas production by CO 2 reforming of methane. Applied Surface Science, 2017, 426, 864-873.	6.1	46
20	Characterisation of rare earth oxide supported metal catalysts. Study of some ceria supported rhodium phases. Catalysis Today, 1988, 2, 653-662.	4.4	43
21	Rational design of nanostructured, noble metal free, ceria–zirconia catalysts with outstanding low temperature oxygen storage capacity. Journal of Materials Chemistry A, 2013, 1, 4836.	10.3	42
22	Reducibility of ceria–lanthana mixed oxides under temperature programmed hydrogen and inert gas flow conditions. Journal of Alloys and Compounds, 1997, 250, 449-454.	5.5	41
23	Promoting effect of lanthana in the hydrogenation of carbon monoxide over supported rhodium catalysts. Applied Catalysis, 1988, 42, 77-89.	0.8	40
24	Preparation and characterization of Ceï£;Mnï£;O composites with applications in catalytic wet oxidation processes. Surface and Interface Analysis, 2004, 36, 752-755.	1.8	36
25	Structure of highly dispersed metals and oxides: exploring the capabilities of high-resolution electron microscopy. Surface and Interface Analysis, 2000, 29, 411-421.	1.8	35
26	The role of the carbonaceous deposits in the Catalytic Wet Oxidation (CWO) of phenol. Catalysis Communications, 2006, 7, 639-643.	3.3	34
27	Preparation and characterization of a praseodymium oxide to be used as a catalytic support. Journal of Alloys and Compounds, 1992, 180, 271-279.	5.5	31
28	Preparation of rhodium catalysts dispersed on TiO2SiO2 aerogels. Journal of Non-Crystalline Solids, 1992, 147-148, 758-763.	3.1	30
29	The key role of highly dispersed rhodium in the chemistry of hydrogen–ceria systems. Journal of the Chemical Society Chemical Communications, 1992, , 460-462.	2.0	30
30	Originally prepared carbon-based honeycomb monoliths with potential application asÂVOCs adsorbents. Comptes Rendus Chimie, 2006, 9, 1215-1220.	0.5	27
31	Investigation by Means of H2 Adsorption, Diffraction, and Electron Microscopy Techniques of a Cerium/Terbium Mixed Oxide Supported on a Lanthana-Modified Alumina. Chemistry of Materials, 2002, 14, 844-850.	6.7	26
32	Deactivation of Pt/MnOx–CeO2 catalysts for the catalytic wet oxidation of phenol: Formation of carbonaceous deposits and leaching of manganese. Catalysis Today, 2010, 154, 195-201.	4.4	25
33	The effect of reaction conditions on the apparent deactivation of Ce–Zr mixed oxides for the catalytic wet oxidation of phenol. Catalysis Today, 2012, 180, 25-33.	4.4	25
34	Catalytic behavior of lanthana promoted Rh/SiO2 catalysts: influence of the preparation procedure. Applied Catalysis A: General, 2001, 208, 111-123.	4.3	24
35	Preparation of lanthana supported rhodium catalysts. Occurrence of heavy carbonation phenomena on the support Applied Catalysis, 1987, 31, 267-273.	0.8	22
36	Characterization of an experimental TPD—MS system. Quantitative calibrations. Thermochimica Acta, 1983, 70, 249-256.	2.7	21

#	Article	IF	CITATIONS
37	Improving the Redox Response Stability of Ceria-Zirconia Nanocatalysts under Harsh Temperature Conditions. Chemistry of Materials, 2017, 29, 9340-9350.	6.7	21
38	An alternative way of reporting on the redox behaviour of ceria-based catalytic materials: Temperature–chemical environment–oxidation state diagrams. Catalysis Communications, 2005, 6, 582-585.	3.3	20
39	Solid state chemistry of the preparation of lanthana-supported metal catalysts ? study of the impregnation step. Journal of Materials Science, 1987, 22, 3793-3800.	3.7	19
40	Nanostructural evolution of high loading Rh/lanthana catalysts through the preparation and reduction steps. Catalysis Today, 1999, 52, 29-43.	4.4	19
41	HREM characterization of metal catalysts supported on rare-earth oxides: samarium oxide as support. Ultramicroscopy, 1990, 34, 60-65.	1.9	18
42	Influence of the preparation procedure on the chemical and microstructural properties of lanthana promoted Rh/SiO2 catalysts. Journal of Alloys and Compounds, 1997, 250, 461-466.	5.5	18
43	Ultrasound as a tool for the preparation of gels: effect on the textural properties of TiO2-SiO2 aerogels. Journal of Materials Science, 1993, 28, 2191-2195.	3.7	16
44	Study of the reduction/reoxidation cycle in a La/Ce/Tb mixed oxide. Journal of Alloys and Compounds, 1994, 207-208, 196-200.	5.5	16
45	Electron Microscopy Investigations of Nanostructured Ce/Mn Oxides for Catalytic Wet Oxidation. Journal of Physical Chemistry C, 2010, 114, 8981-8991.	3.1	16
46	TPD-MS study of carbonation and hydration of Yb2O3(C). Collection of Czechoslovak Chemical Communications, 1983, 48, 2205-2212.	1.0	16
47	Characterization of samaria samples stabilized in air. Journal of the Less Common Metals, 1985, 110, 433-439.	0.8	15
48	Comments on the preparation of M/4f oxide catalysts. Applied Catalysis, 1986, 21, 379-382.	0.8	13
49	Study of the support evolution through the process of preparation of rhodium/lanthana catalysts. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 2279.	1.0	13
50	An atomically efficient, highly stable and redox active Ce0.5Tb0.5Ox (3% mol.)/MgO catalyst for total oxidation of methane. Journal of Materials Chemistry A, 2019, 7, 8993-9003.	10.3	12
51	A novel procedure for accurate estimations of the lattice parameter of supported nanoparticles from the analysis of plan view HREM images: Application to the structural investigation of Pd/CeO2 catalysts. Catalysis Today, 2012, 180, 174-183.	4.4	11
52	Study of the aging in air of a cubic sample of samaria. Materials Research Bulletin, 1987, 22, 131-138.	5.2	10
53	Metal-Support Interaction Phenomena in Some High Metal Loading Lanthana Supported Rhodium Catalysts. Studies in Surface Science and Catalysis, 1989, , 123-132.	1.5	10
54	Study of the interaction of two hexagonal neodymium oxides with atmospheric CO2 and H2O. Journal of Materials Science, 1988, 23, 1474-1480.	3.7	9

#	Article	IF	CITATIONS
55	Microstructure and catalytic properties of Rh and Ni dispersed on TiO2-SiO2 aerogels. Journal of Sol-Gel Science and Technology, 1994, 2, 831-836.	2.4	9
56	Pt/SiO2 Sonogels: Synthesis and Characterization. Langmuir, 1995, 11, 4328-4332.	3.5	9
57	Synthesis, characterization and performance of sol-gel prepared TiO2-SiO2catalysts and supports. Studies in Surface Science and Catalysis, 1995, , 461-470.	1.5	9
58	A facile one-pot hydrothermal synthesis as an efficient method to modulate the potassium content of cryptomelane and its effects on the redox and catalytic properties. Chinese Journal of Catalysis, 2019, 40, 940-952.	14.0	9
59	Honeycomb monolithic design to enhance the performance of Ni-based catalysts for dry reforming of methane. Catalysis Today, 2022, 383, 226-235.	4.4	8
60	Ultrathin Washcoat and Very Low Loading Monolithic Catalyst with Outstanding Activity and Stability in Dry Reforming of Methane. Nanomaterials, 2020, 10, 445.	4.1	8
61	Preparation of some rare earth oxide supported rhodium catalysts: Study of the supports. Materials Chemistry and Physics, 1987, 17, 433-443.	4.0	7
62	The chemistry in air of the rare-earth-metal sesquioxides. Comparative study of hexagonal and cubic neodymia samples. Journal of the Chemical Society Dalton Transactions, 1988, , 1765-1771.	1.1	7
63	Catalytic behaviour and surface properties of supported lanthana. Journal of Alloys and Compounds, 1992, 180, 295-301.	5.5	7
64	Influence of the noble metal on the properties as oxygen exchanger of Rh/LnOx systems (Ln: Ce,Tb): Application of the oxygen buffering capacity (OBC) technique. Journal of Alloys and Compounds, 2002, 344, 347-351.	5.5	6
65	Characterization of silica dispersed lanthana by CO2 adsorption. Journal of Alloys and Compounds, 1994, 207-208, 201-205.	5.5	5
66	Characterization of an experimental TPD-MS system. Reliability problems. Thermochimica Acta, 1986, 98, 319-326.	2.7	4
67	Analysis of some aspects of the catalytic behaviour of lanthanide oxides. Journal of the Less Common Metals, 1983, 94, 145-150.	0.8	3
68	Alcohol Decomposition as Reaction Test to Analyse the Catalytic Properties of 4 <i>f</i> Oxides. Zeitschrift Fur Physikalische Chemie, 1983, 138, 229-238.	2.8	3
69	The influence of the structural nature of samaria on its behaviour against atmospheric CO2 and H2O. Materials Letters, 1987, 6, 71-74.	2.6	3
70	Thermal decomposition and FTIR study of pyridine adsorption on sonogel catalysts. Thermochimica Acta, 1995, 255, 319-328.	2.7	2
71	Influence of the textural properties on the catalytic activity of 4f oxides. Surface Technology, 1984, 22, 299-304.	0.4	1
72	Behaviour of neodymia as a support of highly dispersed rhodium. Inorganica Chimica Acta, 1987, 140, 49-51.	2.4	1

#	Article	IF	CITATIONS
73	Analysis and application of the theories that rationalize the crystalline structures of fluorite-related rare earth oxides. Catalysis Today, 2012, 180, 161-166.	4.4	0