
Michael J Prigge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7502178/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutations in the gene encoding Aminodeoxychorismate Synthase confer auxotrophic phenotypes. MicroPublication Biology, 2021, 2021, .	0.1	0
2	Dual Role of Auxin in Regulating Plant Defense and Bacterial Virulence Gene Expression During <i>Pseudomonas syringae</i> PtoDC3000 Pathogenesis. Molecular Plant-Microbe Interactions, 2020, 33, 1059-1071.	1.4	48
3	Genetic analysis of the Arabidopsis TIR1/AFB auxin receptors reveals both overlapping and specialized functions. ELife, 2020, 9, .	2.8	115
4	The pea branching RMS2 gene encodes the PsAFB4/5 auxin receptor and is involved in an auxin-strigolactone regulation loop. PLoS Genetics, 2017, 13, e1007089.	1.5	45
5	The <i>Arabidopsis</i> Auxin Receptor F-Box Proteins AFB4 and AFB5 Are Required for Response to the Synthetic Auxin Picloram. G3: Genes, Genomes, Genetics, 2016, 6, 1383-1390.	0.8	89
6	Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins. ELife, 2016, 5, .	2.8	144
7	Untethering the TIR1 auxin receptor from the SCF complex increases its stability and inhibits auxin response. Nature Plants, 2015, 1, .	4.7	80
8	Mutations in the TIR1 Auxin Receptor That Increase Affinity for Auxin/Indole-3-Acetic Acid Proteins Result in Auxin Hypersensitivity Â. Plant Physiology, 2013, 162, 295-303.	2.3	57
9	The cyclophilin DIACEOTROPICA has a conserved role in auxin signaling. Development (Cambridge), 2012, 139, 1115-1124.	1.2	44
10	The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants. Science, 2011, 332, 960-963.	6.0	794
11	Physcomitrella patens Auxin-Resistant Mutants Affect Conserved Elements of an Auxin-Signaling Pathway. Current Biology, 2010, 20, 1907-1912.	1.8	142
12	<i>Arabidopsis ROOT UVB SENSITIVE2/WEAK AUXIN RESPONSE1</i> Is Required for Polar Auxin Transport Â. Plant Cell, 2010, 22, 1749-1761.	3.1	40
13	Evolutionary crossroads in developmental biology: <i>Physcomitrella patens</i> . Development (Cambridge), 2010, 137, 3535-3543.	1.2	120
14	The <i>TRANSPORT INHIBITOR RESPONSE2</i> Gene Is Required for Auxin Synthesis and Diverse Aspects of Plant Development. Plant Physiology, 2009, 151, 168-179.	2.3	185
15	Complex regulation of the TIR1/AFB family of auxin receptors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22540-22545.	3.3	403
16	The <i>Physcomitrella</i> Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science, 2008, 319, 64-69.	6.0	1,712
17	Two Cap-Binding Proteins CBP20 and CBP80 are Involved in Processing Primary MicroRNAs. Plant and Cell Physiology, 2008, 49, 1634-1644.	1.5	164
18	Evolution of the class III HD-Zip gene family in land plants. Evolution & Development, 2006, 8, 350-361.	1.1	131

MICHAEL J PRIGGE

#	Article	IF	CITATIONS
19	Class III Homeodomain-Leucine Zipper Gene Family Members Have Overlapping, Antagonistic, and Distinct Roles in Arabidopsis Development. Plant Cell, 2005, 17, 61-76.	3.1	650
20	CORONA, a Member of the Class III Homeodomain Leucine Zipper Gene Family in Arabidopsis, Regulates Stem Cell Specification and Organogenesis. Plant Cell, 2005, 17, 691-704.	3.1	139
21	The Arabidopsis <i>SERRATE</i> Gene Encodes a Zinc-Finger Protein Required for Normal Shoot Development. Plant Cell, 2001, 13, 1263-1280.	3.1	167
22	<i>REVOLUTA</i> regulates meristem initiation at lateral positions. Plant Journal, 2001, 25, 223-236.	2.8	34
23	REVOLUTA regulates meristem initiation at lateral positions. Plant Journal, 2001, 25, 223-236.	2.8	383
24	The Arabidopsis SERRATE Gene Encodes a Zinc-Finger Protein Required for Normal Shoot Development. Plant Cell, 2001, 13, 1263-1280.	3.1	162