Xu-Ming Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7501417/publications.pdf Version: 2024-02-01

XU-MING MAO

#	Article	IF	CITATIONS
1	Efficient Biosynthesis of Fungal Polyketides Containing the Dioxabicyclo-octane Ring System. Journal of the American Chemical Society, 2015, 137, 11904-11907.	13.7	90
2	Epigenetic Genome Mining of an Endophytic Fungus Leads to the Pleiotropic Biosynthesis of Natural Products. Angewandte Chemie - International Edition, 2015, 54, 7592-7596.	13.8	76
3	Transcriptional Regulation of the Daptomycin Gene Cluster in Streptomyces roseosporus by an Autoregulator, AtrA. Journal of Biological Chemistry, 2015, 290, 7992-8001.	3.4	69
4	Rational construction of genome-reduced and high-efficient industrial Streptomyces chassis based on multiple comparative genomic approaches. Microbial Cell Factories, 2019, 18, 16.	4.0	55
5	Molecular mechanism of azoxy bond formation for azoxymycins biosynthesis. Nature Communications, 2019, 10, 4420.	12.8	47
6	Identification and Biosynthetic Characterization of Natural Aromatic Azoxy Products from <i>Streptomyces chattanoogensis</i> L10. Organic Letters, 2015, 17, 6114-6117.	4.6	42
7	The regulatory cascades of antibiotic production in Streptomyces. World Journal of Microbiology and Biotechnology, 2020, 36, 13.	3.6	39
8	Positive Feedback Regulation of <i>stgR</i> Expression for Secondary Metabolism in Streptomyces coelicolor. Journal of Bacteriology, 2013, 195, 2072-2078.	2.2	35
9	DepR1, a TetR Family Transcriptional Regulator, Positively Regulates Daptomycin Production in an Industrial Producer, Streptomyces roseosporus SW0702. Applied and Environmental Microbiology, 2016, 82, 1898-1905.	3.1	35
10	Crotonylation of key metabolic enzymes regulates carbon catabolite repression in Streptomyces roseosporus. Communications Biology, 2020, 3, 192.	4.4	35
11	Reciprocal Regulation between SigK and Differentiation Programs in <i>Streptomyces coelicolor</i> . Journal of Bacteriology, 2009, 191, 6473-6481.	2.2	30
12	Involvement of SigT and RstA in the differentiation of <i>Streptomyces coelicolor</i> . FEBS Letters, 2009, 583, 3145-3150.	2.8	28
13	Sigma factor WhiGch positively regulates natamycin production in Streptomyces chattanoogensis L10. Applied Microbiology and Biotechnology, 2015, 99, 2715-2726.	3.6	27
14	DptR2, a DeoR-type auto-regulator, is required for daptomycin production in Streptomyces roseosporus. Gene, 2014, 544, 208-215.	2.2	26
15	Transposon-based identification of a negative regulator for the antibiotic hyper-production in Streptomyces. Applied Microbiology and Biotechnology, 2018, 102, 6581-6592.	3.6	26
16	Negative regulation of daptomycin production by DepR2, an ArsR-family transcriptional factor. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1653-1658.	3.0	22
17	Multiple transporters are involved in natamycin efflux in <scp><i>S</i></scp> <i>treptomyces chattanoogensis</i> L10. Molecular Microbiology, 2017, 103, 713-728.	2.5	21
18	Multi-Layer Controls of Cas9 Activity Coupled With ATP Synthase Over-Expression for Efficient Genome Editing in Streptomyces. Frontiers in Bioengineering and Biotechnology, 2019, 7, 304.	4.1	20

Xu-Ming Mao

#	Article	IF	CITATIONS
19	Genomic and transcriptomic survey of an endophytic fungus Calcarisporium arbuscula NRRL 3705 and potential overview of its secondary metabolites. BMC Genomics, 2020, 21, 424.	2.8	20
20	Dual Positive Feedback Regulation of Protein Degradation of an Extra-cytoplasmic Function σ Factor for Cell Differentiation in Streptomyces coelicolor. Journal of Biological Chemistry, 2013, 288, 31217-31228.	3.4	19
21	Comprehensive dissection of dispensable genomic regions in Streptomyces based on comparative analysis approach. Microbial Cell Factories, 2020, 19, 99.	4.0	14
22	Revelation of the Balanol Biosynthetic Pathway in <i>Tolypocladium ophioglossoides</i> . Organic Letters, 2018, 20, 6323-6326.	4.6	13
23	Bidirectional Regulation of AdpAch in Controlling the Expression of scnRl and scnRlI in the Natamycin Biosynthesis of Streptomyces chattanoogensis L10. Frontiers in Microbiology, 2018, 9, 316.	3.5	13
24	Dual regulation between the two-component system PhoRP and AdpA regulates antibiotic production in <i>Streptomyces</i> . Journal of Industrial Microbiology and Biotechnology, 2019, 46, 725-737.	3.0	13
25	Regulation of Protein Post-Translational Modifications on Metabolism of Actinomycetes. Biomolecules, 2020, 10, 1122.	4.0	12
26	Regulatory and biosynthetic effects of the <i>bkd</i> gene clusters on the production of daptomycin and its analogs A21978C1–3. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 271-279.	3.0	11
27	Development of an efficient genetic system in a gene cluster-rich endophytic fungus Calcarisporium arbuscula NRRL 3705. Journal of Microbiological Methods, 2018, 151, 1-6.	1.6	10
28	Proteasome involvement in a complex cascade mediating SigT degradation during differentiation of <i>Streptomyces coelicolor</i> . FEBS Letters, 2014, 588, 608-613.	2.8	9
29	FadR1, a pathway-specific activator of fidaxomicin biosynthesis in Actinoplanes deccanensis Yp-1. Applied Microbiology and Biotechnology, 2019, 103, 7583-7596.	3.6	8
30	Activation of anthrachamycin biosynthesis in Streptomyces chattanoogensis L10 by site-directed mutagenesis of rpoB. Journal of Zhejiang University: Science B, 2019, 20, 983-994.	2.8	8
31	Transcriptome-Based Identification of a Strong Promoter for Hyper-production of Natamycin in Streptomyces. Current Microbiology, 2019, 76, 95-99.	2.2	8
32	Discovery of Semi-Pinacolases from the Epoxide Hydrolase Family during Efficient Assembly of a Fungal Polyketide. ACS Catalysis, 2021, 11, 14702-14711.	11.2	8
33	Construction of over-expression shuttle vectors in Streptomyces. Annals of Microbiology, 2012, 62, 1541-1546.	2.6	7
34	Identification of a secondary metabolism-responsive promoter by proteomics for over-production of natamycin in Streptomyces. Archives of Microbiology, 2019, 201, 1459-1464.	2.2	7
35	An efficient genetic transformation system for Chinese medicine fungus Tolypocladium ophioglossoides. Journal of Microbiological Methods, 2020, 176, 106032.	1.6	7
36	Fine-Tuning Cas9 Activity with a Cognate Inhibitor AcrIIA4 to Improve Genome Editing in <i>Streptomyces</i> . ACS Synthetic Biology, 2021, 10, 2833-2841.	3.8	6

Xu-Ming Mao

#	Article	IF	CITATIONS
37	A Cell Factory of a Fungicolous Fungus Calcarisporium arbuscula for Efficient Production of Natural Products. ACS Synthetic Biology, 2021, 10, 698-706.	3.8	5
38	A target and efficient synthetic strategy for structural and bioactivity optimization of a fungal natural product. European Journal of Medicinal Chemistry, 2022, 229, 114067.	5.5	5
39	Substrate Specificity of Acyltransferase Domains for Efficient Transfer of Acyl Groups. Frontiers in Microbiology, 2018, 9, 1840.	3.5	4
40	m4C DNA methylation regulates biosynthesis of daptomycin in Streptomyces roseosporus L30. Synthetic and Systems Biotechnology, 2022, 7, 1013-1023.	3.7	4
41	Development of Series of Affinity Tags in Streptomyces. Scientific Reports, 2017, 7, 6854.	3.3	2
42	Discovery of a Potential Liver Fibrosis Inhibitor from a Mushroom Endophytic Fungus by Genome Mining of a Silent Biosynthetic Gene Cluster. Journal of Agricultural and Food Chemistry, 2021, 69, 11303-11310.	5.2	1