Peidong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7501364/publications.pdf

Version: 2024-02-01

200 papers 52,126 citations

2544 96 h-index 183 g-index

210 all docs

210 docs citations

times ranked

210

46419 citing authors

#	Article	IF	CITATIONS
1	Interpreting inquiry learning in social studies: Singapore secondary school teachers' understandings of "lssue Investigationâ€â€"a preliminary study. Pedagogies, 2023, 18, 26-42.	0.9	2
2	Differentiated inclusion, muted diversification: immigrant teachers' settlement and professional experiences in Singapore as a case of â€~middling' migrants' integration. Journal of Ethnic and Migration Studies, 2022, 48, 1711-1728.	2.8	9
3	China in the global field of international student mobility: an analysis of economic, human and symbolic capitals. Compare, 2022, 52, 308-326.	2.1	52
4	The Interactive Dynamics of Nanocatalyst Structure and Microenvironment during Electrochemical CO ₂ Conversion. Jacs Au, 2022, 2, 562-572.	7.9	44
5	Ferroelectricity in a semiconducting all-inorganic halide perovskite. Science Advances, 2022, 8, eabj5881.	10.3	37
6	The presence and role of the intermediary CO reservoir in heterogeneous electroreduction of CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201922119.	7.1	17
7	Photoelectrochemical CO ₂ Reduction toward Multicarbon Products with Silicon Nanowire Photocathodes Interfaced with Copper Nanoparticles. Journal of the American Chemical Society, 2022, 144, 8002-8006.	13.7	46
8	<i>Operando</i> Resonant Soft X-ray Scattering Studies of Chemical Environment and Interparticle Dynamics of Cu Nanocatalysts for CO ₂ Electroreduction. Journal of the American Chemical Society, 2022, 144, 8927-8931.	13.7	18
9	Rethinking international student mobility through the lens of "crisis―at a juncture of pandemic and global uncertainties. Asia Pacific Journal of Education, 2022, 42, 20-33.	2.1	8
10	Enhancing Biohybrid CO ₂ to Multicarbon Reduction via Adapted Whole-Cell Catalysts. Nano Letters, 2022, 22, 5503-5509.	9.1	16
11	Photosynthetic biohybrid coculture for tandem and tunable CO ₂ and N ₂ fixation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	14
12	Supramolecular Assembly of Halide Perovskite Building Blocks. Journal of the American Chemical Society, 2022, 144, 12450-12458.	13.7	16
13	Nature of the Electrical Double Layer on Suspended Graphene Electrodes. Journal of the American Chemical Society, 2022, 144, 13327-13333.	13.7	8
14	Phase transition dynamics in one-dimensional halide perovskite crystals. MRS Bulletin, 2021, 46, 310-316.	3.5	8
15	Vibrational relaxation dynamics in layered perovskite quantum wells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	33
16	Gold-Nanocluster-Mediated Delivery of siRNA to Intact Plant Cells for Efficient Gene Knockdown. Nano Letters, 2021, 21, 5859-5866.	9.1	53
17	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	14.6	705
18	Sulfur-doped graphene anchoring of ultrafine Au25 nanoclusters for electrocatalysis. Nano Research, 2021, 14, 3509-3513.	10.4	26

#	Article	IF	Citations
19	A New Perspective and Design Principle for Halide Perovskites: Ionic Octahedron Network (ION). Nano Letters, 2021, 21, 5415-5421.	9.1	9
20	Revealing the Phase Separation Behavior of Thermodynamically Immiscible Elements in a Nanoparticle. Nano Letters, 2021, 21, 6684-6689.	9.1	18
21	Liquid Sunlight: The Evolution of Photosynthetic Biohybrids. Nano Letters, 2021, 21, 5453-5456.	9.1	20
22	Ligand removal of Au25 nanoclusters by thermal and electrochemical treatments for selective CO2 electroreduction to CO. Journal of Chemical Physics, 2021, 155, 051101.	3.0	16
23	Heterostructured Au–Ir Catalysts for Enhanced Oxygen Evolution Reaction. , 2021, 3, 1440-1447.		20
24	Envisioning the "Air Economy―— Powered by Reticular Chemistry and Sunlight for Clean Air, Clean Energy, and Clean Water. Molecular Frontiers Journal, 2021, 05, 30-37.	1.1	5
25	On the occasion of the 80th birthday of Professor Yitai Qian: Celebrating 60 years of innovation in solid-state chemistry and nanoscience. Nano Research, 2021, 14, 3337-3342.	10.4	1
26	Molecular insights and future frontiers in cell photosensitization for solar-driven CO2 conversion. IScience, 2021, 24, 102952.	4.1	17
27	Nanopore-mediated protein delivery enabling three-color single-molecule tracking in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
28	Ligand-Free Processable Perovskite Semiconductor Ink. Nano Letters, 2021, 21, 8856-8862.	9.1	16
29	Lattice Dynamics and Optoelectronic Properties of Vacancy-Ordered Double Perovskite Cs ₂ TeX ₆ (X = Cl [–] , Br [–] , I [–]) Single Crystals. Journal of Physical Chemistry C, 2021, 125, 25126-25139.	3.1	17
30	Nanoparticle Assembly Induced Ligand Interactions for Enhanced Electrocatalytic CO ₂ Conversion. Journal of the American Chemical Society, 2021, 143, 19919-19927.	13.7	32
31	Surface and Interface Control in Nanoparticle Catalysis. Chemical Reviews, 2020, 120, 1184-1249.	47.7	492
32	Toward a Framework for (Re)Thinking the Ethics and Politics of International Student Mobility. Journal of Studies in International Education, 2020, 24, 518-534.	3.2	42
33	Solid-State Ionic Rectification in Perovskite Nanowire Heterostructures. Nano Letters, 2020, 20, 8151-8156.	9.1	12
34	Phase Transitions and Anion Exchange in All-Inorganic Halide Perovskites. Accounts of Materials Research, 2020, 1, 3-15.	11.7	67
35	Selective CO2 electrocatalysis at the pseudocapacitive nanoparticle/ordered-ligand interlayer. Nature Energy, 2020, 5, 1032-1042.	39.5	99
36	Individually Encapsulated Frame-in-Frame Structure. , 2020, 2, 685-690.		10

#	Article	IF	CITATIONS
37	Size Transformation of the Au ₂₂ (SG) ₁₈ Nanocluster and Its Surface-Sensitive Kinetics. Journal of the American Chemical Society, 2020, 142, 11514-11520.	13.7	30
38	Morphology-controlled transformation of Cu@Au core-shell nanowires into thermally stable Cu3Au intermetallic nanowires. Nano Research, 2020, 13, 2564-2569.	10.4	22
39	Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nature Catalysis, 2020, 3, 245-255.	34.4	237
40	Lead halide perovskite nanowires stabilized by block copolymers for Langmuir-Blodgett assembly. Nano Research, 2020, 13, 1453-1458.	10.4	26
41	Structural and spectral dynamics of single-crystalline Ruddlesden-Popper phase halide perovskite blue light-emitting diodes. Science Advances, 2020, 6, eaay4045.	10.3	88
42	Lead-free Cesium Europium Halide Perovskite Nanocrystals. Nano Letters, 2020, 20, 3734-3739.	9.1	103
43	Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature, 2020, 580, 614-620.	27.8	284
44	Scaling Laws of Exciton Recombination Kinetics in Low Dimensional Halide Perovskite Nanostructures. Journal of the American Chemical Society, 2020, 142, 8871-8879.	13.7	26
45	Electrochemically scrambled nanocrystals are catalytically active for CO ₂ -to-multicarbons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9194-9201.	7.1	99
46	Educational Mobility and Citizenship: Chinese "Foreign Talent―Students in Singapore and Indian Medical Students in China. , 2020, , 633-647.		0
47	Psychoanalyzing fleeting emotive migrant encounters: A case from Singapore. Emotion, Space and Society, 2019, 31, 133-139.	1.5	8
48	Self-Assembly of Two-Dimensional Perovskite Nanosheet Building Blocks into Ordered Ruddlesden–Popper Perovskite Phase. Journal of the American Chemical Society, 2019, 141, 13028-13032.	13.7	59
49	Introduction: 1D Nanomaterials/Nanowires. Chemical Reviews, 2019, 119, 8955-8957.	47.7	121
50	Nanowires for Photonics. Chemical Reviews, 2019, 119, 9153-9169.	47.7	173
51	Nanowire Photoelectrochemistry. Chemical Reviews, 2019, 119, 9221-9259.	47.7	158
52	Designing materials for electrochemical carbon dioxide recycling. Nature Catalysis, 2019, 2, 648-658.	34.4	838
53	Three-Dimensional Phthalocyanine Metal-Catecholates for High Electrochemical Carbon Dioxide Reduction. Journal of the American Chemical Society, 2019, 141, 17081-17085.	13.7	165
54	Perovskite nanowire–block copolymer composites with digitally programmable polarization anisotropy. Science Advances, 2019, 5, eaav8141.	10.3	103

#	Article	IF	CITATIONS
55	Quantitative imaging of anion exchange kinetics in halide perovskites. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12648-12653.	7.1	84
56	Nontoxic nanopore electroporation for effective intracellular delivery of biological macromolecules. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7899-7904.	7.1	120
57	Pressure-induced semiconductor-to-metal phase transition of a charge-ordered indium halide perovskite. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23404-23409.	7.1	45
58	Reply to Nathamgari et al.: Nanopore electroporation for intracellular delivery of biological macromolecules. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22911-22911.	7.1	4
59	Co-feeding copper catalysts couple carbon. Nature Nanotechnology, 2019, 14, 1002-1003.	31.5	5
60	Compromise and complicity in international student mobility: the ethnographic case of Indian medical students at a Chinese university. Discourse, 2018, 39, 694-708.	1.3	74
61	Thermochromic halide perovskite solar cells. Nature Materials, 2018, 17, 261-267.	27.5	630
62	Physical Biology of the Materials–Microorganism Interface. Journal of the American Chemical Society, 2018, 140, 1978-1985.	13.7	115
63	Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nature Catalysis, 2018, 1, 103-110.	34.4	737
64	Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nature Catalysis, 2018, 1, 282-290.	34.4	699
65	Desiring †foreign talent': lack and Lacan in anti-immigrant sentiments in Singapore. Journal of Ethnic and Migration Studies, 2018, 44, 1015-1031.	2.8	23
66	Understanding Youth Educational Mobilities in Asia: A Comparison of Chinese †Foreign Talent†M Students in Singapore and Indian MBBS Students in China. Journal of Intercultural Studies, 2018, 39, 722-738.	0.6	24
67	Intrinsic anion diffusivity in lead halide perovskites is facilitated by a soft lattice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11929-11934.	7.1	153
68	Giant Light-Emission Enhancement in Lead Halide Perovskites by Surface Oxygen Passivation. Nano Letters, 2018, 18, 6967-6973.	9.1	59
69	Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nature Nanotechnology, 2018, 13, 900-905.	31.5	362
70	Cytoprotective metal-organic frameworks for anaerobic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10582-10587.	7.1	145
71	Interfacing nature's catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nature Nanotechnology, 2018, 13, 890-899.	31.5	322

#	Article	IF	CITATIONS
73	Rich Chemistry in Inorganic Halide Perovskite Nanostructures. Advanced Materials, 2018, 30, e1802856.	21.0	106
74	Electrical and Optical Tunability in All-Inorganic Halide Perovskite Alloy Nanowires. Nano Letters, 2018, 18, 3538-3542.	9.1	51
7 5	Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite. Nature Communications, 2018, 9, 2525.	12.8	129
76	Commentary: International Students in China—What We Know, What We Don't, and What Next. , 2018, , 249-255.		16
77	Tunable Polaron Distortions Control the Extent of Halide Demixing in Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 3998-4005.	4.6	129
78	Educational Mobility and Citizenship: Chinese "Foreign Talent―Students in Singapore and Indian Medical Students in China. , 2018, , 1-16.		3
79	Synthesis of Silver Nanowires with Reduced Diameters Using Benzoin-Derived Radicals to Make Transparent Conductors with High Transparency and Low Haze. Nano Letters, 2018, 18, 5329-5334.	9.1	96
80	Effects of Catalyst Processing on the Activity and Stability of Pt–Ni Nanoframe Electrocatalysts. ACS Nano, 2018, 12, 8697-8705.	14.6	80
81	Phase-transition–induced p-n junction in single halide perovskite nanowire. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8889-8894.	7.1	48
82	Electron delocalization and charge mobility as a function of reduction in a metal–organic framework. Nature Materials, 2018, 17, 625-632.	27.5	255
83	Educational Mobility and Transnationalization. , 2018, , 39-63.		22
84	Investigation of phonon coherence and backscattering using silicon nanomeshes. Nature Communications, 2017, 8, 14054.	12.8	123
85	Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano Research, 2017, 10, 1107-1114.	10.4	128
86	Janus monolayers of transition metal dichalcogenides. Nature Nanotechnology, 2017, 12, 744-749.	31.5	1,459
87	Ultrathin Epitaxial Cu@Au Core–Shell Nanowires for Stable Transparent Conductors. Journal of the American Chemical Society, 2017, 139, 7348-7354.	13.7	125
88	Tandem Catalysis for CO ₂ Hydrogenation to C ₂ â€"C ₄ Hydrocarbons. Nano Letters, 2017, 17, 3798-3802.	9.1	183
89	Electrochemical Activation of CO ₂ through Atomic Ordering Transformations of AuCu Nanoparticles. Journal of the American Chemical Society, 2017, 139, 8329-8336.	13.7	529
90	Cyborgian Material Design for Solar Fuel Production: The Emerging Photosynthetic Biohybrid Systems. Accounts of Chemical Research, 2017, 50, 476-481.	15.6	114

#	Article	IF	Citations
91	Revealing the Size-Dependent d–d Excitations of Cobalt Nanoparticles Using Soft X-ray Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 319-325.	4.6	9
92	Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nature Reviews Materials, 2017, 2, .	48.7	279
93	Copper nanoparticle ensembles for selective electroreduction of CO $<$ sub $>$ 2 $<$ /sub $>$ to C $<$ sub $>$ 2 $<$ /sub $>$ a \in "C $<$ sub $>$ 3 $<$ /sub $>$ products. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10560-10565.	7.1	479
94	Ultralow thermal conductivity in all-inorganic halide perovskites. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8693-8697.	7.1	246
95	Control of Architecture in Rhombic Dodecahedral Pt–Ni Nanoframe Electrocatalysts. Journal of the American Chemical Society, 2017, 139, 11678-11681.	13.7	166
96	Spatially resolved multicolor CsPbX ₃ nanowire heterojunctions via anion exchange. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7216-7221.	7.1	178
97	Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3. Nature Materials, 2017, 16, 819-825.	27.5	178
98	Room-Temperature Coherent Optical Phonon in 2D Electronic Spectra of CH ₃ NH ₃ Pbl ₃ Perovskite as a Possible Cooling Bottleneck. Journal of Physical Chemistry Letters, 2017, 8, 3211-3215.	4.6	73
99	Tunable Cu Enrichment Enables Designer Syngas Electrosynthesis from CO ₂ . Journal of the American Chemical Society, 2017, 139, 9359-9363.	13.7	260
100	Understanding †integration': Chinese †foreign talent' students in Singapore talking about rongru. Transitions: Journal of Transient Migration, 2017, 1, 29-45.	0.3	5
101	Flexible Citizens or Disconnected Transmigrants? Chinese Student-Turned-Migrants in and Their Discourse on , Flexibility, and. Cultural Studies and Transdisciplinarity in Education, 2017, , 227-242.	0.3	2
102	Figuring out the university and the student in neoliberal times: reviews of <i>Learning under neoliberalism </i> (Nielsen 2015). Social Anthropology, 2016, 24, 243-248.	0.4	0
103	Atomic Structure of Ultrathin Gold Nanowires. Nano Letters, 2016, 16, 3078-3084.	9.1	82
104	Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays. ACS Nano, 2016, 10, 5525-5535.	14.6	70
105	Spectroscopic elucidation of energy transfer in hybrid inorganic–biological organisms for solar-to-chemical production. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11750-11755.	7.1	125
106	Directed Assembly of Nanoparticle Catalysts on Nanowire Photoelectrodes for Photoelectrochemical CO ₂ Reduction. Nano Letters, 2016, 16, 5675-5680.	9.1	125
107	Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts. Nature Materials, 2016, 15, 1188-1194.	27.5	244
108	Atomic Resolution Imaging of Halide Perovskites. Nano Letters, 2016, 16, 7530-7535.	9.1	125

#	Article	IF	CITATIONS
109	Semiconductor nanowire lasers. Nature Reviews Materials, 2016, 1, .	48.7	332
110	Solution-Processed Copper/Reduced-Graphene-Oxide Core/Shell Nanowire Transparent Conductors. ACS Nano, 2016, 10, 2600-2606.	14.6	155
111	Low-Temperature Solution-Phase Growth of Silicon and Silicon-Containing Alloy Nanowires. Journal of Physical Chemistry C, 2016, 120, 20525-20529.	3.1	4
112	Single-nanowire photoelectrochemistry. Nature Nanotechnology, 2016, 11, 609-612.	31.5	111
113	Lasing in robust cesium lead halide perovskite nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1993-1998.	7.1	668
114	TiO ₂ /BiVO ₄ Nanowire Heterostructure Photoanodes Based on Type II Band Alignment. ACS Central Science, 2016, 2, 80-88.	11.3	263
115	Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science, 2016, 351, 74-77.	12.6	770
116	Workers' rights defence on China's internet: an analysis of actors. Information, Communication and Society, 2016, 19, 1171-1186.	4.0	6
117	Core–Shell CdS–Cu ₂ S Nanorod Array Solar Cells. Nano Letters, 2015, 15, 4096-4101.	9.1	114
118	<i>Operando</i> Spectroscopic Analysis of an Amorphous Cobalt Sulfide Hydrogen Evolution Electrocatalyst. Journal of the American Chemical Society, 2015, 137, 7448-7455.	13.7	330
119	Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies. Journal of the American Chemical Society, 2015, 137, 16008-16011.	13.7	1,004
120	Atomic Structure of Pt ₃ Ni Nanoframe Electrocatalysts by <i>in Situ</i> X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 2015, 137, 15817-15824.	13.7	197
121	MoS2-wrapped silicon nanowires for photoelectrochemical water reduction. Nano Research, 2015, 8, 281-287.	10.4	87
122	Diaosi as infrapolitics: scatological tropes, identity-making and cultural intimacy on China's Internet. Media, Culture and Society, 2015, 37, 197-214.	3.1	39
123	Stabilization of 4H hexagonal phase in gold nanoribbons. Nature Communications, 2015, 6, 7684.	12.8	215
124	Lower threshold for nanowire lasers. Nature Materials, 2015, 14, 557-558.	27.5	74
125	Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349, 1518-1521.	12.6	1,159
126	Synthesis of Ultrathin Copper Nanowires Using Tris(trimethylsilyl)silane for High-Performance and Low-Haze Transparent Conductors. Nano Letters, 2015, 15, 7610-7615.	9.1	179

#	Article	IF	CITATIONS
127	Hybrid bioinorganic approach to solar-to-chemical conversion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11461-11466.	7.1	234
128	Covalent organic frameworks comprising cobalt porphyrins for catalytic CO ₂ reduction in water. Science, 2015, 349, 1208-1213.	12.6	2,046
129	A Phenomenology of being "Very China― Asian Journal of Social Science, 2014, 42, 233-261.	0.3	12
130	"Authenticity―and "Foreign Talent―in Singapore: The Relative and Negative Logic of National Identity. Sojourn, 2014, 29, 408.	0.2	31
131	Alumina-coated Ag nanocrystal monolayers as surfaceenhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Research, 2014, 7, 132-143.	10.4	35
132	Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nature Communications, 2014, 5, 4948.	12.8	1,062
133	Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nature Communications, 2014, 5, 4966.	12.8	533
134	Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion. Frontiers of Physics, 2014, 9, 289-302.	5.0	49
135	Privilege, Prejudice, Predicament: "PRC Scholars―in Singapore—An Overview. Frontiers of Education in China, 2014, 9, 350-376.	2.2	22
136	Lads in Waiting: Another â€~Crisis'. An Exploratory Study on the Indian â€~Fresher' Rating Seafarers. Globa Labour Journal, 2014, 1, .	al 0.5	2
137	Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Research, 2013, 6, 47-54.	10.4	274
138	Energy and environment policy case for a global project on artificial photosynthesis. Energy and Environmental Science, 2013, 6, 695.	30.8	264
139	Photocatalytic generation of hydrogen from water using a cobalt pentapyridine complex in combination with molecular and semiconductor nanowire photosensitizers. Chemical Science, 2013, 4, 118-124.	7.4	179
140	"Union Regimes― Discipline and Punish in Three Indian Maritime Trade Unions. International Critical Thought, 2013, 3, 43-58.	0.5	1
141	Semiconductor nanowire building blocks: From flux line pinning to artificial photosynthesis. MRS Bulletin, 2012, 37, 806-813.	3.5	18
142	Synthesis and Photocatalytic Properties of Single Crystalline (Ga _{1â€x} Zn _x)(N _{1â€x} O _x) Nanotubes. Israel Journal of Chemistry, 2012, 52, 1111-1117.	2.3	15
143	Towards systems materials engineering. Nature Materials, 2012, 11, 560-563.	27.5	255
144	Atomic-level control of the thermoelectric properties in polytypoid nanowires. Chemical Science, 2011, 2, 706.	7.4	69

#	Article	lF	Citations
145	Catalytic properties of Pt cluster-decorated CeO2 nanostructures. Nano Research, 2011, 4, 61-71.	10.4	91
146	Nanowire dye-sensitized solar cells. , 2010, , 75-79.		3
147	Semiconductor Nanowire: What's Next?. Nano Letters, 2010, 10, 1529-1536.	9.1	717
148	Semiconductor nanowires for energy conversion. , 2010, , .		3
149	Enhanced thermoelectric performance of rough silicon nanowires. , 2010, , 111-115.		2
150	Thermoelectric properties of p-type PbSe nanowires. Nano Research, 2009, 2, 394-399.	10.4	76
151	Nanowire photonics. Nature Photonics, 2009, 3, 569-576.	31.4	1,548
152	Sum Frequency Generation and Catalytic Reaction Studies of the Removal of Organic Capping Agents from Pt Nanoparticles by UVâ 'Ozone Treatment. Journal of Physical Chemistry C, 2009, 113, 6150-6155.	3.1	254
153	Vertical nanowire array-based light emitting diodes. Nano Research, 2008, 1, 123-128.	10.4	179
154	Chemistry and physics of silicon nanowire. Dalton Transactions, 2008, , 4387.	3.3	23
155	Nanowires for Subwavelength Waveguides. , 2007, , .		0
156	Nanowire Photonics., 2007, , .		0
157	Trapping and Transport of Silicon Nanowires Using Lateral-Field Optoelectronic Tweezers., 2007,,.		10
158	Semiconductor nanowire manipulation using optoelectronic tweezers., 2007,,.		7
159	Propagation of guided modes in curved nanoribbon waveguides. Applied Physics Letters, 2006, 89, 241108.	3.3	14
160	Platinum nanoparticle encapsulation during hydrothermal growth of mesoporous oxides: Synthesis, characterization and catalytic properties. Materials Research Society Symposia Proceedings, 2005, 900, 1.	0.1	0
161	SEMICONDUCTOR NANOWIRES AND NANOTUBES. Annual Review of Materials Research, 2004, 34, 83-122.	9.3	1,304
162	Rapid Prototyping of Site-Specific Nanocontacts by Electron and Ion Beam Assisted Direct-Write Nanolithography. Nano Letters, 2004, 4, 2059-2063.	9.1	115

#	Article	IF	CITATIONS
163	Ion Transport in Nanofluidic Channels. Nano Letters, 2004, 4, 137-142.	9.1	454
164	Ultrafast Carrier Dynamics in Single ZnO Nanowire and Nanoribbon Lasers. Nano Letters, 2004, 4, 197-204.	9.1	319
165	Electrochemomechanical Energy Conversion in Nanofluidic Channels. Nano Letters, 2004, 4, 2315-2321.	9.1	304
166	Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides. Journal of Physical Chemistry B, 2003, 107, 8816-8828.	2.6	602
167	Thermal conductivity of individual silicon nanowires. Applied Physics Letters, 2003, 83, 2934-2936.	3.3	1,536
168	Langmuirâ°'Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. Nano Letters, 2003, 3, 1229-1233.	9.1	1,267
169	Watching GaN Nanowires Grow. Nano Letters, 2003, 3, 867-869.	9.1	188
170	Self-Organized GaN Quantum Wire UV Lasers. Journal of Physical Chemistry B, 2003, 107, 8721-8725.	2.6	281
171	Metalorganic Chemical Vapor Deposition Route to GaN Nanowires with Triangular Cross Sections. Nano Letters, 2003, 3, 1063-1066.	9.1	362
172	SEMICONDUCTOR NANOWIRES: FUNCTIONAL BUILDING BLOCKS FOR NANOTECHNOLOGY. , 2003, , 183-226.		6
173	Functional Bimorph Composite Nanotapes. Nano Letters, 2002, 2, 1109-1112.	9.1	96
174	Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires. Nano Letters, 2002, 2, 279-283.	9.1	305
175	INORGANIC SEMICONDUCTOR NANOWIRES. International Journal of Nanoscience, 2002, 01, 1-39.	0.7	155
176	Langmuir–Blodgett Assembly of One-Dimensional Nanostructures. ChemPhysChem, 2002, 3, 503.	2.1	152
177	Semiconductor Nanowire Array: Potential Substrates for Photocatalysis and Photovoltaics. Topics in Catalysis, 2002, 19, 197-202.	2.8	107
177		2.8	107 425
	Catalysis, 2002, 19, 197-202.		

#	Article	IF	Citations
181	Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 2001, 292, 1897-1899.	12.6	8,567
182	Germanium/carbon core–sheath nanostructures. Applied Physics Letters, 2000, 77, 43-45.	3.3	84
183	Ag nanowire formation within mesoporous silica. Chemical Communications, 2000, , 1063-1064.	4.1	349
184	Germanium Nanowire Growth via Simple Vapor Transport. Chemistry of Materials, 2000, 12, 605-607.	6.7	448
185	Hexagonal to Mesocellular Foam Phase Transition in Polymer-Templated Mesoporous Silicas. Langmuir, 2000, 16, 8291-8295.	3.5	404
186	Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature, 1999, 399, 48-51.	27.8	709
187	Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework. Chemistry of Materials, 1999, 11, 2813-2826.	6.7	1,111
188	Fluoride-Induced Hierarchical Ordering of Mesoporous Silica in Aqueous Acid-Syntheses. Advanced Materials, 1999, 11, 303-307.	21.0	174
189	Fluoride-Induced Hierarchical Ordering of Mesoporous Silica in Aqueous Acid-Syntheses. Advanced Materials, 1999, 11, 303-307.	21.0	3
190	Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature, 1998, 396, 152-155.	27.8	2,408
191	Continuous Mesoporous Silica Films with Highly Ordered Large Pore Structures. Advanced Materials, 1998, 10, 1380-1385.	21.0	842
192	Triblock-Copolymer-Directed Syntheses of Large-Pore Mesoporous Silica Fibers. Chemistry of Materials, 1998, 10, 2033-2036.	6.7	277
193	Continuous Mesoporous Silica Films with Highly Ordered Large Pore Structures. , 1998, 10, 1380.		2
194	High-Temperature Superconductors. Science, 1997, 277, 1909-1914.	12.6	1
195	Pulsed Laser Deposition of Diamond-Like Carbon Thin Films: Ablation Dynamics and Growth. Materials Research Society Symposia Proceedings, 1996, 438, 593.	0.1	4
196	Measurements of Bi/sub 2 /Te/sub 3 / nanowire thermal conductivity and Seebeck coefficient., 0 ,, .		7
197	Functional semiconductor nanowires and their optical properties. , 0, , .		0
198	Empire at the margins: Compulsory mobility, hierarchical imaginary, and education in China's ethnic borderland. London Review of Education, 0, 12, .	1.8	3

#	Article	IF	CITATIONS
199	Resolving Carrier Dynamics in Metal Halide Perovskites to Elucidate Structural Transformation Mechanisms and the Impact of Structural Heterogeneity on Transport. , 0, , .		0
200	Phase transition dynamics in one-dimensional halide perovskite crystals. MRS Bulletin, 0, , 1-7.	3.5	1