
Claudia Colombrita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/750116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science, 2015, 347, 1436-1441.	6.0	823
2	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	3.8	517
3	TDPâ€43 is recruited to stress granules in conditions of oxidative insult. Journal of Neurochemistry, 2009, 111, 1051-1061.	2.1	435
4	Exome-wide Rare Variant Analysis Identifies TUBA4A Mutations Associated with Familial ALS. Neuron, 2014, 84, 324-331.	3.8	308
5	TDP-43 and FUS RNA-binding Proteins Bind Distinct Sets of Cytoplasmic Messenger RNAs and Differently Regulate Their Post-transcriptional Fate in Motoneuron-like Cells. Journal of Biological Chemistry, 2012, 287, 15635-15647.	1.6	233
6	NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1037-1042.	9.4	218
7	Curcumin Activates Defensive Genes and Protects Neurons Against Oxidative Stress. Antioxidants and Redox Signaling, 2006, 8, 395-403.	2.5	178
8	Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress: A nutritional approach. Amino Acids, 2003, 25, 437-444.	1.2	165
9	Increased expression of heat shock proteins in rat brain during aging: relationship with mitochondrial function and glutathione redox state. Mechanisms of Ageing and Development, 2004, 125, 325-335.	2.2	161
10	Acetylcarnitine induces heme oxygenase in rat astrocytes and protects against oxidative stress: Involvement of the transcription factor Nrf2. Journal of Neuroscience Research, 2005, 79, 509-521.	1.3	158
11	Mutations of FUS gene in sporadic amyotrophic lateral sclerosis. Journal of Medical Genetics, 2010, 47, 190-194.	1.5	152
12	Ethyl Ferulate, a Lipophilic Polyphenol, Induces HO-1 and Protects Rat Neurons Against Oxidative Stress. Antioxidants and Redox Signaling, 2004, 6, 811-818.	2.5	151
13	Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts. Acta Neuropathologica Communications, 2016, 4, 47.	2.4	147
14	Gene expression profiles of heme oxygenase isoforms in the rat brain. Brain Research, 2002, 954, 51-59.	1.1	144
15	Identification of new ANG gene mutations in a large cohort of Italian patients with amyotrophic lateral sclerosis. Neurogenetics, 2008, 9, 33-40.	0.7	102
16	Genetics of familial Amyotrophic lateral sclerosis. Archives Italiennes De Biologie, 2011, 149, 65-82.	0.1	70
17	Protective Effect of Carnosine During Nitrosative Stress in Astroglial Cell Cultures. Neurochemical Research, 2005, 30, 797-807.	1.6	67
18	ELAV proteins along evolution: Back to the nucleus?. Molecular and Cellular Neurosciences, 2013, 56, 447-455.	1.0	67

CLAUDIA COLOMBRITA

#	Article	IF	CITATIONS
19	Redox Modulation of Heat Shock Protein Expression by Acetylcarnitine in Aging Brain: Relationship to Antioxidant Status and Mitochondrial Function. Antioxidants and Redox Signaling, 2006, 8, 404-416.	2.5	62
20	Post-transcriptional Regulation of Neuro-oncological Ventral Antigen 1 by the Neuronal RNA-binding Proteins ELAV. Journal of Biological Chemistry, 2008, 283, 7531-7541.	1.6	56
21	Chronic stress induces formation of stress granules and pathological TDP-43 aggregates in human ALS fibroblasts and iPSC-motoneurons. Neurobiology of Disease, 2020, 145, 105051.	2.1	52
22	Regional Rat Brain Distribution of Heme Oxygenase-1 and Manganese Superoxide Dismutase mRNA: Relevance of Redox Homeostasis in the Aging Processes. Experimental Biology and Medicine, 2003, 228, 517-524.	1.1	49
23	11,12-Epoxyeicosatrienoic acid stimulates heme-oxygenase-1 in endothelial cells. Prostaglandins and Other Lipid Mediators, 2007, 82, 155-161.	1.0	44
24	Dendritic targeting of short and long 3′ UTR BDNF mRNA is regulated by BDNF or NT-3 and distinct sets of RNA-binding proteins. Frontiers in Molecular Neuroscience, 2015, 8, 62.	1.4	39
25	From transcriptomic to protein level changes in TDP-43 and FUS loss-of-function cell models. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 1398-1410.	0.9	38
26	C9orf72 repeat expansions are restricted to the ALS-FTD spectrum. Neurobiology of Aging, 2014, 35, 936.e17.	1.5	28
27	Heme oxygenase-1 expression levels are cell cycle dependent. Biochemical and Biophysical Research Communications, 2003, 308, 1001-1008.	1.0	26
28	RNA-binding proteins and RNA metabolism: a new scenario in the pathogenesis of Amyotrophic lateral sclerosis. Archives Italiennes De Biologie, 2011, 149, 83-99.	0.1	26
29	Oligoclonal bands in the cerebrospinal fluid of amyotrophic lateral sclerosis patients with disease-associated mutations. Journal of Neurology, 2013, 260, 85-92.	1.8	24
30	Behavioral effects of dietary cholesterol in rats tested in experimental models of mild stress and cognition tasks. European Neuropsychopharmacology, 2008, 18, 462-471.	0.3	19
31	SUMOylation Regulates TDP-43 Splicing Activity and Nucleocytoplasmic Distribution. Molecular Neurobiology, 2021, 58, 5682-5702.	1.9	19
32	Heme Oxygenase Overexpression Attenuates Glucose-Mediated Oxidative Stress in Quiescent Cell Phase: Linking Heme to Hyperglycemia Complications. Current Neurovascular Research, 2005, 2, 103-111.	0.4	16
33	PKC Activation Counteracts ADAM10 Deficit in HuD-Silenced Neuroblastoma Cells. Journal of Alzheimer's Disease, 2016, 54, 535-547.	1.2	10
34	hnRNPA2/B1 and nELAV proteins bind to a specific U-rich element in CDK5R1 3′-UTR and oppositely regulate its expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 506-516.	0.9	9
35	No C9orf72 repeat expansion in patients with primary progressive multiple sclerosis. Multiple Sclerosis and Related Disorders, 2018, 25, 192-195.	0.9	9
36	TDP-43 and NOVA-1 RNA-binding proteins as competitive splicing regulators of the schizophrenia-associated TNIK gene. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194413.	0.9	9

CLAUDIA COLOMBRITA

#	Article	IF	CITATIONS
37	Cerebrospinal fluid phosphorylated neurofilament heavy chain and chitotriosidase in primary lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 221-223.	0.9	9
38	Reprogramming fibroblasts and peripheral blood cells from a C9ORF72 patient: A proofâ€ofâ€principle study. Journal of Cellular and Molecular Medicine, 2020, 24, 4051-4060.	1.6	8
39	A novel nonsense ATP7A pathogenic variant in a family exhibiting a variable occipital horn syndrome phenotype. Molecular Genetics and Metabolism Reports, 2017, 13, 14-17.	0.4	7
40	CSF angiogenin levels in amyotrophic lateral Sclerosis-Frontotemporal dementia spectrum. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 63-69.	1.1	6
41	C9ORF72 Repeat Expansion Affects the Proteome of Primary Skin Fibroblasts in ALS. International Journal of Molecular Sciences, 2021, 22, 10385.	1.8	6
42	Genetic and epigenetic disease modifiers in an Italian <i>C9orf72</i> family expressing ALS, FTD or PD clinical phenotypes. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 292-298.	1.1	5
43	Inter-Species Differences in Regulation of the Progranulin–Sortilin Axis in TDP-43 Cell Models of Neurodegeneration. International Journal of Molecular Sciences, 2019, 20, 5866.	1.8	3
44	Characterization of the c9orf72 GC-rich low complexity sequence in two cohorts of Italian and Turkish ALS cases. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 426-431.	1.1	2
45	Response to the commentary "The effect of C9orf72 intermediate repeat expansions in neurodegenerative and autoimmune diseases―by Biasiotto G and Zanella I.✰. Multiple Sclerosis and Related Disorders, 2019, 27, 79-80.	0.9	1