Swakkhar Shatabda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7501062/publications.pdf

Version: 2024-02-01

82 papers 1,371 citations

393982 19 h-index 31 g-index

89 all docs 89 docs citations

89 times ranked 845 citing authors

#	Article	IF	CITATIONS
1	DPP-PseAAC: A DNA-binding protein prediction model using Chou's general PseAAC. Journal of Theoretical Biology, 2018, 452, 22-34.	0.8	126
2	iDTI-ESBoost: Identification of Drug Target Interaction Using Evolutionary and Structural Features with Boosting. Scientific Reports, 2017, 7, 17731.	1.6	99
3	PyFeat: a Python-based effective feature generation tool for DNA, RNA and protein sequences. Bioinformatics, 2019, 35, 3831-3833.	1.8	80
4	iDNAProt-ES: Identification of DNA-binding Proteins Using Evolutionary and Structural Features. Scientific Reports, 2017, 7, 14938.	1.6	73
5	Effective DNA binding protein prediction by using key features via Chou's general PseAAC. Journal of Theoretical Biology, 2019, 460, 64-78.	0.8	49
6	An approximation algorithm for sorting by reversals and transpositions. Journal of Discrete Algorithms, 2008, 6, 449-457.	0.7	43
7	iPro70-FMWin: identifying Sigma70 promoters using multiple windowing and minimal features. Molecular Genetics and Genomics, 2019, 294, 69-84.	1.0	43
8	HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features. BioMed Research International, 2017, 2017, 1-10.	0.9	41
9	CUSBoost: Cluster-Based Under-Sampling with Boosting for Imbalanced Classification. , 2017, , .		39
10	iPromoter-BnCNN: a novel branched CNN-based predictor for identifying and classifying sigma promoters. Bioinformatics, 2020, 36, 4869-4875.	1.8	37
11	iPromoter-FSEn: Identification of bacterial $\dagger f$ 70 promoter sequences using feature subspace based ensemble classifier. Genomics, 2019, 111, 1160-1166.	1.3	36
12	FRnet-DTI: Deep convolutional neural network for drug-target interaction prediction. Heliyon, 2020, 6, e03444.	1.4	35
13	Towards development of IoT-ML driven healthcare systems: A survey. Journal of Network and Computer Applications, 2021, 196, 103244.	5.8	35
14	iProtGlyâ€SS: Identifying protein glycation sites using sequence and structure based features. Proteins: Structure, Function and Bioinformatics, 2018, 86, 777-789.	1.5	32
15	EvoStruct-Sub: An accurate Gram-positive protein subcellular localization predictor using evolutionary and structural features. Journal of Theoretical Biology, 2018, 443, 138-146.	0.8	31
16	ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides. Scientific Reports, 2021, 11, 23676.	1.6	31
17	iRSpot-SF: Prediction of recombination hotspots by incorporating sequence based features into Chou's Pseudo components. Genomics, 2019, 111, 966-972.	1.3	30
18	iPHLoc-ES: Identification of bacteriophage protein locations using evolutionary and structural features. Journal of Theoretical Biology, 2017, 435, 229-237.	0.8	29

#	Article	IF	CITATIONS
19	Locate-R: Subcellular localization of long non-coding RNAs using nucleotide compositions. Genomics, 2020, 112, 2583-2589.	1.3	29
20	Improving Detection Accuracy for Imbalanced Network Intrusion Classification using Cluster-based Under-sampling with Random Forests. , 2019, , .		28
21	Hybrid Methods for Class Imbalance Learning Employing Bagging with Sampling Techniques. , 2017, , .		24
22	CFSBoost: Cumulative feature subspace boosting for drug-target interaction prediction. Journal of Theoretical Biology, 2019, 464, 1-8.	0.8	20
23	DeepDBP: Deep neural networks for identification of DNA-binding proteins. Informatics in Medicine Unlocked, 2020, 19, 100318.	1.9	20
24	iRecSpot-EF: Effective sequence based features for recombination hotspot prediction. Computers in Biology and Medicine, 2018, 103, 17-23.	3.9	19
25	Accurately Predicting Glutarylation Sites Using Sequential Bi-Peptide-Based Evolutionary Features. Genes, 2020, 11, 1023.	1.0	17
26	Bangla Sentence Correction Using Deep Neural Network Based Sequence to Sequence Learning. , 2018, , .		14
27	Memory-based local search for simplified protein structure prediction. , 2012, , .		13
28	The road not taken: retreat and diverge in local search for simplified protein structure prediction. BMC Bioinformatics, 2013, 14, S19.	1.2	13
29	Spiral search: a hydrophobic-core directed local search for simplified PSP on 3D FCC lattice. BMC Bioinformatics, 2013, 14, S16.	1.2	13
30	A Data Selection Methodology to Train Linear Regression Model to Predict Bitcoin Price. , 2020, , .		13
31	How Good Are Simplified Models for Protein Structure Prediction?. Advances in Bioinformatics, 2014, 2014, 1-9.	5.7	12
32	Poribohon-BD: Bangladeshi local vehicle image dataset with annotation for classification. Data in Brief, 2020, 33, 106465.	0.5	12
33	Mal-Light: Enhancing Lysine Malonylation Sites Prediction Problem Using Evolutionary-based Features. IEEE Access, 2020, 8, 77888-77902.	2.6	12
34	MEBoost: Mixing estimators with boosting for imbalanced data classification. , 2017, , .		11
35	EPAI-NC: Enhanced prediction of adenosine to inosine RNA editing sites using nucleotide compositions. Analytical Biochemistry, 2019, 569, 16-21.	1.1	11
36	Accurate prediction of RNA 5-hydroxymethylcytosine modification by utilizing novel position-specific gapped k-mer descriptors. Computational and Structural Biotechnology Journal, 2020, 18, 3528-3538.	1.9	11

#	Article	IF	CITATIONS
37	Native Vehicles Classification on Bangladeshi Roads Using CNN with Transfer Learning. , 2020, , .		11
38	SEMal: Accurate protein malonylation site predictor using structural and evolutionary information. Computers in Biology and Medicine, 2020, 125, 104022.	3.9	10
39	A convolution based computational approach towards DNA N6-methyladenine site identification and motif extraction in rice genome. Scientific Reports, 2021, 11, 10357.	1.6	10
40	Random-walk., 2012,,.		9
41	PanClassif: Improving pan cancer classification of single cell RNA-seq gene expression data using machine learning. Genomics, 2022, 114, 110264.	1.3	9
42	An efficient encoding for simplified protein structure prediction using genetic algorithms., 2013,,.		8
43	An ant colony optimization algorithm for load shedding minimization in smart grids. , 2016, , .		8
44	Bangla Content Categorization Using Text Based Supervised Learning Methods. , 2018, , .		8
45	Protein structure prediction from inaccurate and sparse NMR data using an enhanced genetic algorithm. Computational Biology and Chemistry, 2019, 79, 6-15.	1.1	8
46	Convolutional neural networks with image representation of amino acid sequences for protein function prediction. Computational Biology and Chemistry, 2021, 92, 107494.	1.1	8
47	Recent Development of Machine Learning Methods in Microbial Phosphorylation Sites. Current Genomics, 2020, 21, 194-203.	0.7	8
48	BanglaSER: A speech emotion recognition dataset for the Bangla language. Data in Brief, 2022, 42, 108091.	0.5	8
49	Big Data with Decision Tree Induction. , 2019, , .		7
50	CoMOGrad and PHOG: From Computer Vision to Fast and Accurate Protein Tertiary Structure Retrieval. Scientific Reports, 2015, 5, 13275.	1.6	6
51	SubFeat: Feature subspacing ensemble classifier for function prediction of DNA, RNA and protein sequences. Computational Biology and Chemistry, 2021, 92, 107489.	1.1	6
52	PRESa2i: incremental decision trees for prediction of Adenosine to Inosine RNA editing sites. F1000Research, 0, 9, 262.	0.8	6
53	Predicting Academic Performance: Analysis of Students' Mental Health Condition from Social Media Interactions. Behavioral Sciences (Basel, Switzerland), 2022, 12, 87.	1.0	5
54	An efficient genetic algorithm for discovering diverse-frequent patterns. , 2015, , .		4

#	Article	IF	CITATIONS
55	Impact of learning analytics on product marketing with serious games in Bangladesh., 2017,,.		4
56	Real-Time EEG Classification of Voluntary Hand Movement Directions using Brain Machine Interface. , 2019, , .		4
57	Stochastic local search for pattern set mining. , 2014, , .		3
58	Efficient conformational space exploration in ab initio protein folding simulation. Royal Society Open Science, 2015, 2, 150238.	1.1	3
59	EGAGP: An enhanced genetic algorithm for producing efficient graph partitions. , 2017, , .		3
60	Wavelet and Pyramid Histogram Features for Image-Based Leaf Detection. Advances in Intelligent Systems and Computing, 2019, , 269-278.	0.5	3
61	OriC-ENS: A sequence-based ensemble classifier for predicting origin of replication in S. cerevisiae. Computational Biology and Chemistry, 2021, 92, 107502.	1.1	3
62	A Parallel Framework for Multipoint Spiral Search in <i>ab Initio</i> Protein Structure Prediction. Advances in Bioinformatics, 2014, 2014, 1-17.	5.7	2
63	A tabu-based heuristic optimization algorithm for load shedding minimization. , 2015, , .		2
64	FGPGA: An efficient genetic approach for producing feasible graph partitions. , 2015, , .		2
65	CycloAnt. , 2017, , .		2
66	Active Learning for Mining Big Data., 2018,,.		2
67	Big Data Mining in the Presence of Concept Drifting. , 2019, , .		2
68	Constraint-Based Evolutionary Local Search for Protein Structures with Secondary Motifs. Lecture Notes in Computer Science, 2014, , 333-344.	1.0	2
69	Gene Transfer: A Novel Genetic Operator for Discovering Diverse-Frequent Patterns. Lecture Notes in Computer Science, 2015, , 309-316.	1.0	1
70	Prediction of Origin of Replication in Genome Using DNA Sequence Based Features. , 2018, , .		1
71	IEEE WIECON-ECE 2018 Novel Class Detection in Concept Drifting Data Streams Using Decision Tree Leaves. , 2018, , .		1
72	Prediction of Bacteriophage Protein Locations Using Deep Neural Networks. Advances in Intelligent Systems and Computing, 2019, , 29-38.	0.5	1

#	Article	IF	CITATIONS
73	Application of Internet of Things for Early Detection of COVID-19 using Wearables. , 2021, , .		1
74	Image-based effective feature generation for protein structural class and ligand binding prediction. PeerJ Computer Science, 2020, 6, e253.	2.7	1
75	iProtGly-SS: A Tool to Accurately Predict Protein Glycation Site Using Structural-Based Features. Methods in Molecular Biology, 2022, , 125-134.	0.4	1
76	GraATP: A graph theoretic approach for Automated Theorem Proving in plane geometry. , 2014, , .		0
77	GreMuTRRR: A novel genetic algorithm to solve distance geometry problem for protein structures. , 2014, , .		O
78	GreMuTRRR: A novel genetic algorithm to solve distance geometry problem for protein structures. , 2014, , .		0
79	A new effective algorithm for protein chain lattice fit problem. , 2015, , .		O
80	Guiding Artificial Neural Networks Using Discriminatory Information In Hidden Layers., 2017,,.		0
81	OriFeat: Origin of Replication Identification Using DNA Sequence Based Features. , 2021, , .		O
82	Figbird: a probabilistic method for filling gaps in genome assemblies. Bioinformatics, 2022, 38, 3717-3724.	1.8	0