Matthew Charles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7500975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The 2018 GaN power electronics roadmap. Journal Physics D: Applied Physics, 2018, 51, 163001.	1.3	843
2	Power electronics with wide bandgap materials: Toward greener, more efficient technologies. MRS Bulletin, 2015, 40, 390-395.	1.7	71
3	Characterization and modeling of 2DEG mobility in AlGaN/AlN/GaN MIS-HEMT. Microelectronic Engineering, 2019, 215, 110976.	1.1	24
4	The Characterization and Optimization of GaN Cap Layers and SiN Cap Layers on AlGaN/GaN HEMT Structures Grown on 200 mm GaN on Silicon. Physica Status Solidi (B): Basic Research, 2018, 255, 1700406.	0.7	21
5	The effect of AlN nucleation temperature on inverted pyramid defects in GaN layers grown on 200 mm silicon wafers. Journal of Crystal Growth, 2017, 464, 164-167.	0.7	20
6	19â€6: <i>Invited Paper</i> : A Novel Process for Fabricating Highâ€Resolution and Very Small Pixelâ€pitch GaN LED Microdisplays. Digest of Technical Papers SID International Symposium, 2017, 48, 268-271.	0.1	16
7	Coherent tunneling in an AlGaN/AlN/GaN heterojunction captured through an analogy with a MOS contact. Scientific Reports, 2017, 7, 8177.	1.6	14
8	H3PO4-based wet chemical etching for recovery of dry-etched GaN surfaces. Applied Surface Science, 2022, 582, 152309.	3.1	13
9	Characterization of 2DEG in AlGaN/GaN heterostructure by Hall effect. Microelectronic Engineering, 2017, 178, 128-131.	1.1	12
10	lon-assisted gate recess process induced damage in GaN channel of AlGaN/GaN Schottky barrier diodes studied by deep level transient spectroscopy. Japanese Journal of Applied Physics, 2017, 56, 04CG01.	0.8	12
11	Effects of negative bias stress on trapping properties of AlGaN/GaN Schottky barrier diodes. Microelectronic Engineering, 2017, 178, 158-163.	1.1	11
12	Multitechnique elemental depth profiling of InAlGaN and InAlN films. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	0.6	10
13	From epitaxy to converters topologies what issues for 200 mm GaN/Si?. , 2015, , .		9
14	High growth rate GaN on 200†mm silicon by metal-organic vapor phase epitaxy for high electron mobility transistors. Journal of Crystal Growth, 2018, 483, 89-93.	0.7	9
15	Study of deep traps in AlGaN/GaN high-electron mobility transistors by electrical characterization and simulation. Journal of Applied Physics, 2019, 125, .	1.1	9
16	Understanding and controlling Ga contamination in InAlN barrier layers. Journal of Crystal Growth, 2019, 507, 139-142.	0.7	9
17	XPS Analysis of AlGaN/GaN Surface after Chemical and N-Containing Plasma Treatments. ECS Transactions, 2013, 50, 451-460.	0.3	8
18	On the Understanding of Cathode Related Trapping Effects in GaN-on-Si Schottky Diodes. IEEE Journal of the Electron Devices Society, 2018, 6, 956-964.	1.2	8

MATTHEW CHARLES

#	Article	IF	CITATIONS
19	Xâ€Ray Diffraction Microstrain Analysis for Extraction of Threading Dislocation Density of GaN Films Grown on Silicon, Sapphire, and SiC Substrates. Physica Status Solidi (B): Basic Research, 2020, 257, 1900579.	0.7	8
20	AlGaN/GaN MIS-HEMT gate structure improvement using Al2O3 deposited by plasma-enhanced ALD. Microelectronic Engineering, 2013, 109, 378-380.	1.1	7
21	Novel sheet resistance measurement on AlGaN/GaN HEMT wafer adapted from four-point probe technique. , 2015, , .		7
22	Accurate statistical extraction of AlGaN/GaN HEMT device parameters using the Y-function. Solid-State Electronics, 2021, 184, 108078.	0.8	7
23	Sheet resistance measurement on AlGaN/GaN wafers and dispersion study. Microelectronic Engineering, 2013, 109, 334-337.	1.1	6
24	Leakage Current Paths in Isolated AlGaN/GaN Heterostructures. IEEE Transactions on Semiconductor Manufacturing, 2016, 29, 363-369.	1.4	6
25	Thermal Evolution of Implantation Damages in Mg-Implanted GaN Layers Grown on Si. ECS Transactions, 2017, 80, 131-138.	0.3	6
26	SiGe nano-heteroepitaxy on Si and SiGe nano-pillars. Nanotechnology, 2018, 29, 275702.	1.3	6
27	Solving the problem of gallium contamination problem in InAlN layers in close coupled showerhead reactors. Applied Physics Express, 2019, 12, 045504.	1.1	6
28	Developments in understanding the nucleation of AlN on silicon by MOCVD and its effects on defects. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600431.	0.8	5
29	Capping stability of Mg-implanted GaN layers grown on silicon. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600487.	0.8	5
30	<i>(Invited) </i> Epitaxy of GaN on Si (111) for Power Electronics, RF and LEDs. ECS Transactions, 2018, 86, 233-247.	0.3	4
31	V-pit pinning at the interface of high and low-temperature gallium nitride growth. Japanese Journal of Applied Physics, 2019, 58, SC1035.	0.8	4
32	Extraction of stress and dislocation density using in-situ curvature measurements for AlGaN and GaN on silicon growth. Journal of Crystal Growth, 2019, 517, 64-67.	0.7	4
33	Gate length effect on trapping properties in AlGaN/GaN high-electron-mobility transistors. Semiconductor Science and Technology, 2019, 34, 045011.	1.0	4
34	Analysis of MIS-HEMT Device Edge Behavior for GaN Technology Using New Differential Method. IEEE Transactions on Electron Devices, 2020, 67, 4649-4653.	1.6	4
35	Y-Function Based Methodology for Accurate Statistical Extraction of HEMT Device Parameters for GaN Technology. , 2020, , .		4
36	Influence of epitaxy and gate deposition process on Ron resistance of AlGaN/GaN-on-Si HEMT. , 2015, , .		3

MATTHEW CHARLES

#	Article	IF	CITATIONS
37	On the understanding of cathode related trapping effects in GaN-on-Si Schottky diodes. , 2017, , .		3
38	Unravelling the unwanted Ga incorporation effect on InGaN epilayers grown in CCS MOVPE reactors. Journal of Crystal Growth, 2020, 536, 125596.	0.7	3
39	Thermoelectric Properties of n-type GaN and 2D Electron Gas in AlGaN-GaN Heterostructure. Journal of Electronic Materials, 2021, 50, 1301-1306.	1.0	3
40	AlGaN/GaN MIS-HEMT Gate Structure Improvement Using Al2O3 Deposited by PEALD and BCl3 Gate Recess Etching. ECS Transactions, 2013, 58, 269-277.	0.3	2
41	A microsecond time resolved current collapse test setup dedicated to GaN-based Schottky diode characterization. , 2017, , .		2
42	TCAD for gate stack optimization in pGaN Gate HEMT devices. , 2017, , .		2
43	Performance enhancement of CMOS compatible 600V rated AlGaN/GaN Schottky diodes on 200mm silicon wafers. , 2018, , .		2
44	Impact of growth conditions on AlN/GaN heterostructures with in-situ SiN capping layer. Journal of Crystal Growth, 2019, 515, 48-52.	0.7	2
45	Analysis of hole-like traps in deep level transient spectroscopy spectra of AlGaN/GaN heterojunctions. Journal Physics D: Applied Physics, 2020, 53, 185105.	1.3	2
46	Impact of Substrate Biasing During AlN Growth by PEALD on Al ₂ O ₃ /AlN/GaN MOS Capacitors. Advanced Materials Interfaces, 2022, 9, 2101731.	1.9	2
47	H2 based etching of GaN for re-grown gallium-free InAlN barriers giving very low 2DEG sheet resistance of 185ÂΩ/sq. Journal of Crystal Growth, 2022, 588, 126674.	0.7	2
48	GaN HEMTs on silicon for power devices. , 2012, , .		1
49	Modification of the surface morphology of silicon(111) with growth temperature. Surface Science, 2013, 608, 199-203.	0.8	1
50	Complete solid state lighting (SSL) line at CEA LETI. Proceedings of SPIE, 2014, , .	0.8	1
51	Novel C-V measurements based method for the extraction of GaN buffer layer residual doping level in HEMT. , 2017, , .		1
52	Nano-Heteroepitaxy: An Investigation of SiGe Nano-Pillars Coalescence. ECS Transactions, 2018, 86, 249-258.	0.3	1
53	III-N Epitaxy on Si for Power Electronics. , 2018, , 115-158.		1

54 Advanced Substrates for GaN-Based Power Devices. , 2019, , .

1

MATTHEW CHARLES

#	Article	IF	CITATIONS
55	SiGe nano-heteroepitaxy: An investigation of the nano-template. Journal of Crystal Growth, 2019, 527, 125232.	0.7	1
56	Doping of GaN grown on silicon via ion implantation. , 2019, , .		0
57	Nano-Heteroepitaxy: An Investigation of SiGe Pillars Coalescence. ECS Journal of Solid State Science and Technology, 2019, 8, P180-P185.	0.9	0
58	Simple and Accurate Prediction of AlGaN Metalâ€Organic Vapor Phase Epitaxy Growth. Physica Status Solidi (B): Basic Research, 2020, 257, 1900576.	0.7	0
59	Parasitic Capacitance Analysis in Short Channel GaN MIS-HEMTs. , 2021, , .		0
60	Thorough Investigation of Low Frequency Noise Mechanisms in AlGaN/GaN and Al ₂ O ₃ /GaN HEMTs., 2021, , .		0