William H Clements

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7500635/william-h-clements-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

4,056 62 40 102 h-index g-index citations papers 5.65 4,488 111 4.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
102	Response of stream ecosystem structure to heavy metal pollution: context-dependency of top-down control by fish. <i>Aquatic Sciences</i> , 2022 , 84, 1	2.5	O
101	Ecological Effects of Mining on Stream Ecosystems 2021 ,		
100	Before-After Control-Impact field surveys and novel experimental approaches provide valuable insights for characterizing stream recovery from acid mine drainage. <i>Science of the Total Environment</i> , 2021 , 771, 145419	10.2	2
99	Long-term monitoring reveals convergent patterns of recovery from mining contamination across 4 western US watersheds. <i>Freshwater Science</i> , 2021 , 40, 407-426	2	3
98	Validation of Bioavailability-Based Toxicity Models for Metals. <i>Environmental Toxicology and Chemistry</i> , 2020 , 39, 101-117	3.8	20
97	Size-Dependent Sensitivity of Aquatic Insects to Metals. <i>Environmental Science & Environmental Scienc</i>	10.3	7
96	Resilience and regime shifts: Do novel communities impede ecological recovery in a historically metal-contaminated stream?. <i>Journal of Applied Ecology</i> , 2019 , 56, 2698-2709	5.8	5
95	Indirect Effects of Iron Oxide on Stream Benthic Communities: Capturing Ecological Complexity with Controlled Mesocosm Experiments. <i>Environmental Science & Experiments (Science & Experiments & Environmental Science & Experiments & Environmental Science & Experiments & Environmental Science & Experiments & Environmental & Experiments & Experiments & Experiments & Experiments & Environmental & Experiments </i>	40 ^{0.3}	8
94	Stream Mesocosm Experiments Show Significant Differences in Sensitivity of Larval and Emerging Adults to Metals. <i>Environmental Science & Emp; Technology</i> , 2019 , 53, 8362-8370	10.3	9
93	Assessment of potential mercury toxicity to native invertebrates in a high-gradient stream. Integrated Environmental Assessment and Management, 2019 , 15, 374-384	2.5	5
92	Context-Dependent Responses of Aquatic Insects to Metals and Metal Mixtures: A Quantitative Analysis Summarizing 24 Yr of Stream Mesocosm Experiments. <i>Environmental Toxicology and Chemistry</i> , 2019 , 38, 2486-2496	3.8	3
91	Structural and functional responses of periphyton and macroinvertebrate communities to ferric Fe, Cu, and Zn in stream mesocosms. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 1320-1329	3.8	11
90	Quantifying Differences in Responses of Aquatic Insects to Trace Metal Exposure in Field Studies and Short-Term Stream Mesocosm Experiments. <i>Environmental Science & Discounty (Common Stream Mesocosm Experiments)</i> 2018, 52, 437	7 ई -438	4 ²⁵
89	Integrating Results of Field Biomonitoring and Mesocosm Experiments To Validate Postspill Impacts of Petroleum Hydrocarbons on Stream Benthic Communities. <i>Environmental Science & Technology</i> , 2018 , 52, 13584-13590	10.3	6
88	An introduced plant affects aquatic-derived carbon in the diets of riparian birds. <i>PLoS ONE</i> , 2018 , 13, e0207389	3.7	4
87	Influence of Metal Contamination and Sediment Deposition on Benthic Invertebrate Colonization at the North Fork Clear Creek Superfund Site, Colorado, USA. <i>Environmental Science & Environmental Science & Technology</i> , 2018 , 52, 7072-7080	10.3	9
86	Metamorphosis Affects Metal Concentrations and Isotopic Signatures in a Mayfly (Baetis tricaudatus): Implications for the Aquatic-Terrestrial Transfer of Metals. <i>Environmental Science & Environmental Science</i>	10.3	26

(2011-2017)

85	Modernizing Water Quality Criteria in the United States: A Need to Expand the Definition of Acceptable Data. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 285-291	3.8	30
84	Effects of magnesium chloride road deicer on montane stream benthic communities. <i>Hydrobiologia</i> , 2017 , 799, 193-202	2.4	11
83	The authors Vreply. Environmental Toxicology and Chemistry, 2017, 36, 1425-1426	3.8	
82	Spectators or participants: How can SETAC become more engaged in international climate change research programs?. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 1971-1977	3.8	3
81	The Use of Field and Mesocosm Experiments to Quantify Effects of Physical and Chemical Stressors in Mining-Contaminated Streams. <i>Environmental Science & Environmental Scienc</i>	10.3	22
80	Perspectives on the context-dependency of stream community responses to contaminants. <i>Freshwater Biology</i> , 2016 , 61, 2162-2170	3.1	31
79	Effects of major ions on natural benthic communities: an experimental assessment of the US Environmental Protection Agency aquatic life benchmark for conductivity. <i>Freshwater Science</i> , 2016 , 35, 126-138	2	82
78	Transforming ecosystems: When, where, and how to restore contaminated sites. <i>Integrated Environmental Assessment and Management</i> , 2016 , 12, 273-83	2.5	17
77	A Continuous Need To Determine What We Should Protect In Ecological Risk Assessments. <i>Environmental Science & Environmental &</i>	10.3	0
76	Ecological Effects of Biochar on the Structure and Function of Stream Benthic Communities. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	9
75	Combined and interactive effects of global climate change and toxicants on populations and communities. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 49-61	3.8	213
74	Comparison of different predictors of exposure for modeling impacts of metal mixtures on macroinvertebrates in stream microcosms. <i>Aquatic Toxicology</i> , 2013 , 132-133, 151-6	5.1	25
73	Responses of aquatic insects to Cu and Zn in stream microcosms: understanding differences between single species tests and field responses. <i>Environmental Science & Environmental Science & Environme</i>	10.3	73
72	Estimating risks to aquatic life using quantile regression. Freshwater Science, 2012, 31, 709-723	2	30
71	How do aquatic communities respond to contaminants? It depends on the ecological context. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 1932-40	3.8	76
70	How to Link Field Observations with Causality? Field and Experimental Approaches Linking Chemical Pollution with Ecological Alterations. <i>Handbook of Environmental Chemistry</i> , 2012 , 181-218	0.8	9
69	Geologic processes influence the effects of mining on aquatic ecosystems 2012 , 22, 870-9		34
68	Responses of benthic macroinvertebrate communities to natural geothermal discharges in Yellowstone National Park, USA. <i>Aquatic Ecology</i> , 2011 , 45, 137-149	1.9	11

67	Critical tissue residue approach linking accumulated metals in aquatic insects to population and community-level effects. <i>Environmental Science & Environmental & Env</i>	10.3	45
66	Quantifying restoration success and recovery in a metal-polluted stream: a 17-year assessment of physicochemical and biological responses. <i>Journal of Applied Ecology</i> , 2010 , 47, 899-910	5.8	47
65	Use of ecological thresholds to assess recovery in lotic ecosystems. <i>Journal of the North American Benthological Society</i> , 2010 , 29, 1017-1023		48
64	Thresholds, breakpoints, and nonlinearity in freshwaters as related to management. <i>Journal of the North American Benthological Society</i> , 2010 , 29, 988-997		137
63	Toxicity of proton-metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability. <i>Aquatic Toxicology</i> , 2010 , 100, 112-9	5.1	88
62	Development of a new toxic-unit model for the bioassessment of metals in streams. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 2432-42	3.8	60
61	Using SiZer to detect thresholds in ecological data. <i>Frontiers in Ecology and the Environment</i> , 2009 , 7, 190-195	5.5	92
60	Effects of measurement error on the strength of concentration-response relationships in aquatic toxicology. <i>Ecotoxicology</i> , 2009 , 18, 824-8	2.9	1
59	Community responses to contaminants: using basic ecological principles to predict ecotoxicological effects. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 1789-800	3.8	230
58	Translating ecological risk to ecosystem service loss. <i>Integrated Environmental Assessment and Management</i> , 2009 , 5, 500-14	2.5	44
57	Changes in dissolved organic material determine exposure of stream benthic communities to UV-B radiation and heavy metals: implications for climate change. <i>Global Change Biology</i> , 2008 , 14, 2201-221	4 ^{11.4}	35
56	The influence of metal exposure history and ultraviolet-B radiation on benthic communities in Colorado Rocky Mountain streams. <i>Journal of the North American Benthological Society</i> , 2008 , 27, 120-1	34	8
55	The cost of tolerance: sensitivity of stream benthic communities to UV-B and metals 2007 , 17, 365-75		48
54	Photochemical control of copper complexation by dissolved organic matter in Rocky Mountain streams, Colorado. <i>Limnology and Oceanography</i> , 2007 , 52, 766-779	4.8	38
53	Experimental Approaches in Community Ecology and Ecotoxicology 2006 , 99-140		
52	Introduction to Community Ecotoxicology 2006 , 1-22		
51	Ecotoxicological Experiments in River Pollution Assessment. <i>Water Quality Measurements Series</i> , 2006 , 241-259		
50	Simulation of metals transport and toxicity at a mine-impacted watershed: California Gulch, Colorado. <i>Environmental Science & Environmental Science &</i>	10.3	51

32

Biotic and Abiotic Factors that Regulate Communities 2006, 23-60 49 Biomonitoring and the Responses of Communities to Contaminants 2006, 61-98 48 Application of Multimetric and Multivariate Approaches in Community Ecotoxicology 2006, 141-166 47 Disturbance Ecology and the Responses of Communities to Contaminants 2006, 167-212 46 Community Responses to Global and Atmospheric Stressors 2006, 213-271 45 Trophic Structure, Food Webs, and Contaminant Transport 2006, 273-321 44 The use of in situ and stream microcosm experiments to assess population- and community-level 3.8 48 43 responses to metals. Environmental Toxicology and Chemistry, 2006, 25, 2306-12 Leaf litter breakdown, microbial respiration and shredder production in metal-polluted streams. 78 42 3.1 Freshwater Biology, 2005, 50, 380-390 Landscape attributes, dissolved organic C, and metal bioaccumulation in aquatic macroinvertebrates (Arkansas River Basin, Colorado). Journal of the North American Benthological 16 41 Society, 2004, 23, 327-339 SMALL-SCALE EXPERIMENTS SUPPORT CAUSAL RELATIONSHIPS BETWEEN METAL 40 125 CONTAMINATION AND MACROINVERTEBRATE COMMUNITY RESPONSES 2004, 14, 954-967 Resistance and resilience of stream insect communities to repeated hydrologic disturbances after a 39 3.1 96 wildfire. Freshwater Biology, 2004, 49, 1243-1259 Influence of total organic carbon and UV-B radiation on zinc toxicity and bioaccumulation in aquatic 38 10.3 17 communities. Environmental Science & Donald Science & Don Growth and secondary production of aquatic insects along a gradient of Zn contamination in Rocky 37 71 Mountain streams. Journal of the North American Benthological Society, 2003, 22, 582-597 Integrating observational and experimental approaches to demonstrate causation in stream 36 3.8 56 biomonitoring studies. Environmental Toxicology and Chemistry, 2002, 21, 1138-1146 Assessing the influence of water and substratum quality on benthic macroinvertebrate 35 communities in a metal-polluted stream: an experimental approach. Freshwater Biology, **2002**, 47, 1766- $\cancel{777}$ 8 Comparison of dietary mercury exposure in two sympatric top predator fishes, largemouth bass 34 and northern pike: a bioenergetics modeling approach. Hydrobiologia, 2002, 9, 137-147 Integrating observational and experimental approaches to demonstrate causation in stream 8 33 biomonitoring studies 2002, 21, 1138

Integrating observational and experimental approaches to demonstrate causation in stream

biomonitoring studies. Environmental Toxicology and Chemistry, 2002, 21, 1138-46

3.8

9

31	Integrating effects of contaminants across levels of biological organization: an overview. <i>Hydrobiologia</i> , 2000 , 7, 113-116		73
30	HEAVY METALS STRUCTURE BENTHIC COMMUNITIES IN COLORADO MOUNTAIN STREAMS 2000 , 10, 626-638		258
29	Sensitivity to acidic pH in benthic invertebrate assemblages with different histories of exposure to metals. <i>Journal of the North American Benthological Society</i> , 2000 , 19, 112-127		58
28	Sensitivity and variability of metrics used in biological assessments of running waters. <i>Environmental Toxicology and Chemistry</i> , 1999 , 18, 285-291	3.8	68
27	Benthic invertebrate metals exposure, accumulation, and community-level effects downstream from a hard-rock mine site. <i>Environmental Toxicology and Chemistry</i> , 1999 , 18, 299-307	3.8	72
26	METAL TOLERANCE AND PREDATOR PREY INTERACTIONS IN BENTHIC MACROINVERTEBRATE STREAM COMMUNITIES 1999 , 9, 1073-1084		20
25	Sensitivity and variability of metrics used in biological assessments of running waters 1999 , 18, 285		6
24	Benthic invertebrate metals exposure, accumulation, and community-level effects downstream from a hard-rock mine site 1999 , 18, 299		6
23	Effects of heavy metals on benthic macroinvertebrate communities in New Zealand streams. <i>Environmental Toxicology and Chemistry</i> , 1998 , 17, 2338-2346	3.8	87
22	RESPONSES OF DIATOM COMMUNITIES TO HEAVY METALS IN STREAMS: THE INFLUENCE OF LONGITUDINAL VARIATION 1998 , 8, 631-644		71
21	Effects of heavy metals on benthic macroinvertebrate communities in New Zealand streams 1998 , 17, 2338		8
20	Effects of Heavy Metals on Prey Abundance, Feeding Habits, and Metal Uptake of Brown Trout in the Arkansas River, Colorado. <i>Transactions of the American Fisheries Society</i> , 1997 , 126, 774-785	1.7	33
19	Influence of ultraviolet-B radiation on the drift response of stream invertebrates. <i>Freshwater Biology</i> , 1997 , 37, 485-492	3.1	27
18	Toxicity and bioaccumulation of a mixture of heavy metals in Chironomus tentans (Diptera: Chironomidae) in synthetic sediment. <i>Environmental Toxicology and Chemistry</i> , 1997 , 16, 317-327	3.8	36
17	Effects of Metals on Stream Macroinvertebrate Assemblages from Different Altitudes 1996 , 6, 472-481		45
16	Size-dependent response of macroinvertebrates to metals in experimental streams. <i>Environmental Toxicology and Chemistry</i> , 1996 , 15, 1352-1356	3.8	57
15	Size-dependent response of macroinvertebrates to metals in experimental streams 1996 , 15, 1352		4
14	The influence of elevation on benthic community responses to heavy metals in Rocky Mountain streams. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1995 , 52, 1966-1977	2.4	60

LIST OF PUBLICATIONS

13	Benthic Invertebrate Community Responses to Heavy Metals in the Upper Arkansas River Basin, Colorado. <i>Journal of the North American Benthological Society</i> , 1994 , 13, 30-44		127	
12	Structural responses of benthic macroinvertebrate communities from different stream orders to zinc. <i>Environmental Toxicology and Chemistry</i> , 1994 , 13, 389-395	3.8	38	
11	Integrated laboratory and field approach for assessing impacts of heavy metals at the Arkansas River, Colorado. <i>Environmental Toxicology and Chemistry</i> , 1994 , 13, 397-404	3.8	67	
10	Effects of Heavy Metals on a Macroinvertebrate Assemblage from a Rocky Mountain Stream in Experimental Microcosms. <i>Journal of the North American Benthological Society</i> , 1994 , 13, 511-523		72	
9	Structural responses of benthic macroinvertebrate communities from different stream orders to zinc 1994 , 13, 389		4	
8	Integrated laboratory and field approach for assessing impacts of heavy metals at the Arkansas River, Colorado 1994 , 13, 397		7	
7	Bioaccumulation of heavy metals by benthic invertebrates at the arkansas river, colorado. <i>Environmental Toxicology and Chemistry</i> , 1993 , 12, 1507-1517	3.8	80	
6	Bioaccumulation of heavy metals by benthic invertebrates at the arkansas river, colorado 1993 , 12, 15	07	4	
5	Assessment of the Impact of Heavy Metals on Benthic Communities at the Clinch River (Virginia): Evaluation of an Index of Community Sensitivity. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1992 , 49, 1686-1694	2.4	92	
4	Colonization, variability, and the use of substratum-filled trays for biomonitoring benthic communities. <i>Hydrobiologia</i> , 1989 , 173, 45-53	2.4	20	
3	The influence of copper exposure on predator-prey interactions in aquatic insect communities. <i>Freshwater Biology</i> , 1989 , 21, 483-488	3.1	54	
2	Structural alterations in aquatic insect communities exposed to copper in laboratory streams. Environmental Toxicology and Chemistry, 1988 , 7, 715-722	3.8	43	
1	Structural alterations in aquatic insect communities exposed to copper in laboratory streams 1988 , 7, 715		3	