Govindaraju M

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7500507/publications.pdf

Version: 2024-02-01

38	677	11 h-index	25
papers	citations		g-index
38	38	38	535
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Stress corrosion cracking behaviour of 7xxx aluminum alloys: A literature review. Transactions of Nonferrous Metals Society of China, 2016, 26, 1447-1471.	1.7	189
2	Research and Development in Magnesium Alloys for Industrial and Biomedical Applications: A Review. Metals and Materials International, 2020, 26, 409-430.	1.8	164
3	Effect of differential heat treatment on the formability of aluminium tailor welded blanks. Materials & Design, 2014, 55, 35-42.	5.1	30
4	Investigations on the surface topography, corrosion behavior, and biocompatibility of friction stir processed magnesium alloy AZ91D. Surface Topography: Metrology and Properties, 2019, 7, 025020.	0.9	28
5	Synthesis and Characterization of Magnesium Alloy Surface Composite (AZ91D - SiO2) by Friction Stir Processing for Bioimplants. Silicon, 2020, 12, 1085-1102.	1.8	26
6	Investigations on the corrosion behaviour and biocompatibility of magnesium alloy surface composites AZ91D-ZrO ₂ fabricated by friction stir processing. Transactions of the Institute of Metal Finishing, 2019, 97, 261-270.	0.6	23
7	Mechanical properties and corrosion behaviour of AZ91D-HAP surface composites fabricated by friction stir processing. Materials Research Express, 2019, 6, 085401.	0.8	23
8	Formability analysis of dissimilar tailor welded blanks welded with different tool pin profiles. Transactions of Nonferrous Metals Society of China, 2015, 25, 1787-1793.	1.7	17
9	Investigations on the tribological behavior of functionally gradient iron-based brake pad material. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234, 2474-2486.	1.1	15
10	Study on the corrosion and wear characteristics of magnesium alloy AZ91D in simulated body fluids. Bulletin of Materials Science, 2020, 43, 1.	0.8	13
11	Effect of friction stir processing and heat treatment on the corrosion properties of AZ31 alloy. Australian Journal of Mechanical Engineering, 2022, 20, 1479-1488.	1.5	13
12	Mechanical Properties of Friction Stir Welded Cast Al–Mg–Sc Alloys. Transactions of the Indian Institute of Metals, 2012, 65, 155-158.	0.7	12
13	Effect of Heat Treatment on the Microstructure and Mechanical Properties of the Friction Stir Processed AZ91D Magnesium Alloy. Metal Science and Heat Treatment, 2019, 61, 311-317.	0.2	12
14	Effect of heat treatment on the mechanical and wear behavior of friction stir processed AA5052 alloy. Materials Today: Proceedings, 2020, 22, 3340-3346.	0.9	12
15	Manufacturing of continuous fiber reinforced sintered brake pad and friction material. Materials Today: Proceedings, 2021, 46, 4493-4496.	0.9	11
16	Design, fabrication, and analysis of cost effective steel honeycomb structures. Materials Today: Proceedings, 2021, 46, 4520-4526.	0.9	9
17	Tribological performance of heavy-duty functionally gradient friction material (Cu-Sn-Fe-Cg-SiC-Al2O3) synthesized by PM route. AIP Conference Proceedings, 2019, , .	0.3	8
18	Friction Stir Processed Rare Earth Containing Magnesium Alloy for High Temperature Application. Materials Science Forum, 0, 710, 235-240.	0.3	7

#	Article	IF	CITATIONS
19	Effect of Cryogenic Treatment on Mechanical Properties of Aluminium Alloy AA2014. Journal of the Institution of Engineers (India): Series D, 2020, 101, 265-270.	0.6	7
20	Comparative studies of nitrogen plasma and argon plasma treatment on the strength of PBO fibre reinforced high-temperature resistant thermoplastic composite. High Performance Polymers, 2021, 33, 729-740.	0.8	7
21	Investigation on the microstructure, microhardness, and tribological behavior of AA1100-hBN surface composite. Koroze A Ochrana Materialu, 2021, 65, 1-11.	0.4	7
22	Effect of Heat Treatment on Mechanical/Metallurgical Properties of Direct Metal Laser Sintered 17-4 Precipitate Hardened Stainless Steel. Advanced Materials Research, 2013, 699, 795-801.	0.3	6
23	Effect of Distance between Passes in Friction Stir Processing of Magnesium Alloy. Advanced Materials Research, 0, 585, 397-401.	0.3	5
24	Investigations on the Creep Behavior of Friction-Stir-Processed Magnesium Alloy AE42. Journal of Materials Engineering and Performance, 2020, 29, 3172-3182.	1.2	5
25	Metallurgical Characterization and Mechanical Properties of Solid–Liquid Compound Casting of Aluminum Alloy: Steel Bimetallic Materials. Metals and Materials International, 2022, 28, 1416-1422.	1.8	5
26	Reciprocating Wear Behavioural Analysis of Heat-treated Aluminium ZrO2/Al7Si0.3Mg Functionally Graded Composite Through Taguchi's Optimization Method. Silicon, 2022, 14, 11337-11354.	1.8	5
27	Friction Welding of Cast Iron and Phosphor Bronze. Journal of the Institution of Engineers (India): Series C, 2020, 101, 347-354.	0.7	4
28	Effect of Fe particles on the microstructural evolution and mechanical properties of friction welded Al-Cu components. Australian Journal of Mechanical Engineering, 2022, 20, 855-865.	1.5	4
29	Fabrication of fly-ash based tiles using liquid phase sintering technology. Materials Today: Proceedings, 2021, 46, 7224-7229.	0.9	3
30	Design of Special Adapters and Furnace for Hot Helium Leak Testing of Plasma Physics Components. Materials Today: Proceedings, 2017, 4, 3652-3658.	0.9	2
31	Friction Stir Processing to Increase the Application Temperature of Rare Earth Magnesium Alloy AE42. Advanced Materials Research, 0, 622-623, 515-519.	0.3	1
32	Making ceramic- metal composite material by friction stir processing. IOP Conference Series: Materials Science and Engineering, 2015, 73, 012064.	0.3	1
33	Simplification of High Temperature High Pressure Equipment and Technique for Advanced Materials Processing. Materials Today: Proceedings, 2018, 5, 16158-16164.	0.9	1
34	Vacuum brazing of mild steel using eutectic CuSil brazing alloy. Materials Today: Proceedings, 2021, 46, 4919-4924.	0.9	1
35	Development of Coupon Level Flyash-Polymer based Paver blocks through Powder Metallurgy Processing Technique. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 0, , 1-34.	0.9	1
36	Multipurpose Vacuum Induction Processing System. Journal of Physics: Conference Series, 2012, 390, 012011.	0.3	0

#	Article	lF	CITATIONS
37	Cost-effective manufacturing of piping components with consistent quality through continuous furnace brazing. AIP Conference Proceedings, 2019, , .	0.3	O
38	Elimination of casting defects induced by cold box cores. Materials Today: Proceedings, 2021, 46, 5022-5026.	0.9	0