
Zhuhong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7500496/publications.pdf Version: 2024-02-01

7HUHONC YANC

#	Article	IF	CITATIONS
1	Trans Influence of Boryl Ligands in CO2 Hydrogenation on Ruthenium Complexes: Theoretical Prediction of Highly Active Catalysts for CO2 Reduction. Catalysts, 2021, 11, 1356.	1.6	4
2	CO2 separation using a hybrid choline-2-pyrrolidine-carboxylic acid/polyethylene glycol/water absorbent. Applied Energy, 2020, 257, 113962.	5.1	17
3	Heterogeneous interfacial engineering of Pd/TiO2 with controllable carbon content for improved direct synthesis efficiency of H2O2. Chinese Journal of Catalysis, 2020, 41, 312-321.	6.9	14
4	Crystalâ€Growthâ€Dominated Fabrication of Metal–Organic Frameworks with Orderly Distributed Hierarchical Porosity. Angewandte Chemie, 2020, 132, 2478-2485.	1.6	5
5	Crystalâ€Growthâ€Dominated Fabrication of Metal–Organic Frameworks with Orderly Distributed Hierarchical Porosity. Angewandte Chemie - International Edition, 2020, 59, 2457-2464.	7.2	53
6	Directed Selfâ€Assembly of MOFâ€Derived Nanoparticles toward Hierarchical Structures for Enhanced Catalytic Activity in CO Oxidation. Advanced Energy Materials, 2019, 9, 1901754.	10.2	30
7	Complete Hydrodesulfurization of Dibenzothiophene via Direct Desulfurization Pathway over Mesoporous TiO2-Supported NiMo Catalyst Incorporated with Potassium. Catalysts, 2019, 9, 448.	1.6	13
8	Improved CO2 separation performance of aqueous choline-glycine solution by partially replacing water with polyethylene glycol. Fluid Phase Equilibria, 2019, 495, 12-20.	1.4	4
9	Interfacial Engineering of NiMo/Mesoporous TiO2 Catalyst with Carbon for Enhanced Hydrodesulfurization Performance. Catalysis Letters, 2018, 148, 992-1002.	1.4	4
10	<i>In Situ</i> Template-Synthesis of Hollow CeO ₂ Nanobeads in scCO ₂ with Improved Catalytic Activity Towards CO Oxidation. Journal of Nanoscience and Nanotechnology, 2018, 18, 2068-2071.	0.9	0
11	Experimental study of CO 2 absorption in aqueous cholinium-based ionic liquids. Fluid Phase Equilibria, 2017, 445, 14-24.	1.4	45
12	CO ₂ Absorption in Mixed Aqueous Solution of MDEA and Cholinium Glycinate. Energy & Fuels, 2017, 31, 7325-7333.	2.5	20
13	Review on heat-utilization processes and heat-exchange equipment in biogas engineering. Journal of Renewable and Sustainable Energy, 2016, 8, .	0.8	24
14	Thermodynamic Study for Gas Absorption in Choline-2-pyrrolidine-carboxylic Acid + Polyethylene Glycol. Journal of Chemical & Engineering Data, 2016, 61, 3428-3437.	1.0	47
15	Wellâ€Dispersed and Sizeâ€Controlled Supported Metal Oxide Nanoparticles Derived from MOF Composites and Further Application in Catalysis. Small, 2015, 11, 3130-3134.	5.2	70
16	Black TiO2(B)/anatase bicrystalline TiO2–x nanofibers with enhanced photocatalytic performance. Chinese Journal of Catalysis, 2015, 36, 1943-1948.	6.9	25
17	CuO/Cu ₂ O porous composites: shape and composition controllable fabrication inherited from metal organic frameworks and further application in CO oxidation. Journal of Materials Chemistry A, 2015, 3, 5294-5298.	5.2	100
18	A template-free method for stable CuO hollow microspheres fabricated from a metal organic framework (HKUST-1). Nanoscale, 2015, 7, 9411-9415.	2.8	33

ZHUHONG YANG

#	Article	IF	CITATIONS
19	Highly Crystalline Mesoporous TiO ₂ (B) Nanofibers. Journal of Physical Chemistry C, 2014, 118, 3049-3055.	1.5	21
20	Carbon-protected Au nanoparticles supported on mesoporous TiO ₂ for catalytic reduction of p-nitrophenol. RSC Advances, 2014, 4, 29591-29594.	1.7	25
21	Protein adsorptive behavior on mesoporous titanium dioxide determined by geometrical topography. Chemical Engineering Science, 2014, 117, 146-155.	1.9	19
22	Shape-controllable synthesis of CeO2 particles in CO2-expanded ethanol towards CO oxidation application. RSC Advances, 2013, 3, 5302.	1.7	3
23	Carbon heterogeneous surface modification on a mesoporous TiO2-supported catalyst and its enhanced hydrodesulfurization performance. Chemical Communications, 2012, 48, 11525.	2.2	43
24	Thermal Stability of Gold Catalyst Supported on Mesoporous Titania Nanofibers. Chinese Journal of Catalysis, 2012, 33, 1480-1485.	6.9	5
25	Preparation of Nickel Phosphide/Mesoporous-TiO2 Catalyst and Its Hydrodesulfurization Performance. Chinese Journal of Catalysis, 2012, 33, 508-517.	6.9	3
26	An Au-Cu Bimetal Catalyst Supported on Mesoporous TiO2 with Stable Catalytic Performance in CO Oxidation. Chinese Journal of Catalysis, 2012, 33, 1778-1782.	6.9	15
27	Helium Recovery by a Cu-BTC Metal–Organic-Framework Membrane. Industrial & Engineering Chemistry Research, 2012, 51, 11274-11278.	1.8	62
28	Preparation and Characterization of Mesoporous MoO3/TiO2 Composite with High Surface Area by Self-Supporting and Ammonia Method. Catalysis Letters, 2012, 142, 480-485.	1.4	12
29	Single-crystalline and reactive facets exposed anatase TiO2 nanofibers with enhanced photocatalytic properties. Journal of Materials Chemistry, 2011, 21, 6718.	6.7	31
30	Photosynthesis-inspired design approach of a liquid phase heterogeneous photoreactor. Green Chemistry, 2011, 13, 1784.	4.6	7
31	Process intensification of heterogeneous photocatalysis with static mixer: Enhanced mass transfer of reactive species. Catalysis Today, 2011, 175, 322-327.	2.2	32
32	Theoretical limiting concentration for mineralization of trichloromethane and dichloromethane in aqueous solutions by AOPs. Science China Chemistry, 2011, 54, 559-564.	4.2	0
33	Thermodynamic analysis of the theoretical energy consumption in the removal of organic contaminants by physical methods. Science China Chemistry, 2010, 53, 671-676.	4.2	7
34	Theoretical limit of energy consumption for removal of organic contaminants in U.S. EPA Priority Pollutant List by NRTL, UNIQUAC and Wilson models. Fluid Phase Equilibria, 2010, 297, 210-214.	1.4	4
35	Synthesis, Features, and Applications of Mesoporous Titania with TiO2(B). Chinese Journal of Catalysis, 2010, 31, 605-614.	6.9	36
36	Comparative Study in Liquid-Phase Heterogeneous Photocatalysis: Model for Photoreactor Scale-Up. Industrial & Engineering Chemistry Research, 2010, 49, 8397-8405.	1.8	18

ZHUHONG YANG

#	Article	IF	CITATIONS
37	A shortcut for evaluating activities of TiO2 facets: water dissociative chemisorption on TiO2-B (100) and (001). Physical Chemistry Chemical Physics, 2010, 12, 8721.	1.3	37
38	Mineralization of Trace Nitro/Chloro/Methyl/Amino-Aromatic Contaminants in Wastewaters by Advanced Oxidation Processes. Industrial & Engineering Chemistry Research, 2010, 49, 6243-6249.	1.8	6
39	Highly Crystalline TiO ₂ Whisker Modified with Pt and Its Photocata-lytic Performance. Chinese Journal of Catalysis, 2010, 31, 1271-1276.	6.9	2
40	Low-Temperature CO Oxidation of Gold Catalysts Loaded on Mesoporous TiO2 Whisker Derived from Potassium Dititanate. Catalysis Letters, 2009, 127, 406-410.	1.4	23
41	Oxidation of Carbon Monoxide over a Fibrous Titania-Supported Gold Catalyst. Chinese Journal of Catalysis, 2009, 30, 421-425.	6.9	10
42	Thermodynamic study on the reactivity of trace organic contaminant with the hydroxyl radicals in waters by advanced oxidation processes. Fluid Phase Equilibria, 2009, 277, 15-19.	1.4	8
43	Highly Thermal Stable and Highly Crystalline Anatase TiO ₂ for Photocatalysis. Environmental Science & Technology, 2009, 43, 5423-5428.	4.6	103
44	Stability of Pt nanoparticles and enhanced photocatalytic performance in mesoporous Pt-(anatase/TiO2(B)) nanoarchitecture. Journal of Materials Chemistry, 2009, 19, 7055.	6.7	72
45	Thermodynamic Analysis on the Mineralization of Trace Organic Contaminants with Oxidants in Advanced Oxidation Processes. Industrial & Engineering Chemistry Research, 2009, 48, 10728-10733.	1.8	6
46	Splitting behavior and structural transformation process of K2Ti6O13 whiskers under hydrothermal conditions. Journal of Materials Science, 2008, 43, 155-163.	1.7	8
47	Enhanced Photocatalytic Activity in Anatase/TiO ₂ (B) Coreâ^'Shell Nanofiber. Journal of Physical Chemistry C, 2008, 112, 20539-20545.	1.5	181
48	Preparation and Characterization of Alkaline Resistant Porous Ceramics from Potassium Titanate Whiskers. Chinese Journal of Chemical Engineering, 2007, 15, 742-747.	1.7	10
49	Highly Efficient Liquid-Phase Photooxidation of an Azo Dye Methyl Orange over Novel Nanostructured Porous Titanate-Based Fiber of Self-Supported Radially Aligned H2Ti8O17·1.5H2O Nanorods. Environmental Science & Technology, 2004, 38, 2729-2736.	4.6	75
50	Study on the formation and growth of potassium titanate whiskers. Journal of Materials Science, 2002, 37, 3035-3043.	1.7	64