List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7499915/publications.pdf Version: 2024-02-01



FRIK ANDREASSON

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Bee-Vectored <i>Aureobasidium pullulans</i> for Biological Control of Gray Mold in Strawberry.<br>Phytopathology, 2022, 112, 232-237.                                                                    | 2.2 | 19        |
| 2  | Potato trait development going fast-forward with genome editing. Trends in Genetics, 2022, 38, 218-221.                                                                                                  | 6.7 | 15        |
| 3  | A Quantitative Luminol-Based Assay for ROS Burst Detection in Potato Leaves in Response to Biotic<br>Stimuli. Methods in Molecular Biology, 2022, , 395-402.                                             | 0.9 | 1         |
| 4  | Potato as a Model for with Modified Gene in Research and Translational Experiments. Methods in<br>Molecular Biology, 2021, 2354, 111-122.                                                                | 0.9 | 3         |
| 5  | Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes. Scientific Reports, 2021, 11, 4487.                                 | 3.3 | 115       |
| 6  | Biological control of strawberry crown rot, root rot and grey mould by the beneficial fungus<br>Aureobasidium pullulans. BioControl, 2021, 66, 535-545.                                                  | 2.0 | 16        |
| 7  | A fast, nondestructive method for the detection of disease-related lesions and wounded leaves.<br>BioTechniques, 2021, 71, 425-430.                                                                      | 1.8 | 5         |
| 8  | â€~Resistance Mixtures' Reduce Insect Herbivory in Strawberry (Fragaria vesca) Plantations. Frontiers in<br>Plant Science, 2021, 12, 722795.                                                             | 3.6 | 6         |
| 9  | Visualising the ionome in resistant and susceptible plant–pathogen interactions. Plant Journal, 2021, 108, 870-885.                                                                                      | 5.7 | 5         |
| 10 | Leaf Apoplast of Field-Grown Potato Analyzed by Quantitative Proteomics and Activity-Based Protein<br>Profiling. International Journal of Molecular Sciences, 2021, 22, 12033.                           | 4.1 | 1         |
| 11 | Strategies for Efficient Gene Editing in Protoplasts of Solanum tuberosum Theme: Determining gRNA<br>Efficiency Design by Utilizing Protoplast (Research). Frontiers in Genome Editing, 2021, 3, 795644. | 5.2 | 8         |
| 12 | Phosphite Integrated in Late Blight Treatment Strategies in Starch Potato Does Not Cause Residues in the Starch Product. Plant Disease, 2020, 104, 3026-3032.                                            | 1.4 | 3         |
| 13 | Tissue Culture and Refreshment Techniques for Improvement of Transformation in Local Tetraploid<br>and Diploid Potato with Late Blight Resistance as an Example. Plants, 2020, 9, 695.                   | 3.5 | 7         |
| 14 | Intact salicylic acid signalling is required for potato defence against the necrotrophic fungus<br>Alternaria solani. Plant Molecular Biology, 2020, 104, 1-19.                                          | 3.9 | 32        |
| 15 | Linking crop traits to transcriptome differences in a progeny population of tetraploid potato. BMC<br>Plant Biology, 2020, 20, 120.                                                                      | 3.6 | 18        |
| 16 | Botanicals and plant strengtheners for potato and tomato cultivation in Africa. Journal of<br>Integrative Agriculture, 2020, 19, 406-427.                                                                | 3.5 | 26        |
| 17 | Phosphite alters the behavioral response of potato tuber moth ( <i>Phthorimaea operculella</i> ) to<br>fieldâ€grown potato. Pest Management Science, 2019, 75, 616-621.                                  | 3.4 | 5         |
| 18 | Proteomics of PTI and Two ETI Immune Reactions in Potato Leaves. International Journal of Molecular Sciences, 2019, 20, 4726.                                                                            | 4.1 | 11        |

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Tolerance and overcompensation to infection by Phytophthora infestans in the wild perennial climber<br>Solanum dulcamara. Ecology and Evolution, 2019, 9, 4557-4567.                         | 1.9 | 6         |
| 20 | Phosphite protects against potato and tomato late blight in tropical climates and has varying toxicity depending on the Phytophthora infestans isolate. Crop Protection, 2019, 121, 139-146. | 2.1 | 14        |
| 21 | High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato. Scientific Reports, 2019, 9, 17715.                                                                                | 3.3 | 75        |
| 22 | Consistent risk regulation? Differences in the European regulation of food crops. Journal of Risk<br>Research, 2019, 22, 1561-1570.                                                          | 2.6 | 3         |
| 23 | RNA seq analysis of potato cyst nematode interactions with resistant and susceptible potato roots.<br>European Journal of Plant Pathology, 2018, 152, 531-539.                               | 1.7 | 9         |
| 24 | Late Blight Resistance Screening of Major Wild Swedish <i>Solanum</i> Species: <i>S. dulcamara, S. nigrum</i> , and <i>S. physalifolium</i> . Phytopathology, 2018, 108, 847-857.            | 2.2 | 4         |
| 25 | Plant immunity in natural populations and agricultural fields: Low presence of pathogenesis-related proteins in Solanum leaves. PLoS ONE, 2018, 13, e0207253.                                | 2.5 | 3         |
| 26 | Draft Genome Sequence for the Tree PathogenPhytophthora plurivora. Genome Biology and Evolution, 2018, 10, 2432-2442.                                                                        | 2.5 | 19        |
| 27 | Host Attraction and Selection in the Swede Midge (Contarinia nasturtii). Frontiers in Ecology and Evolution, 2018, 6, .                                                                      | 2.2 | 2         |
| 28 | Comparative Membrane-Associated Proteomics of Three Different Immune Reactions in Potato.<br>International Journal of Molecular Sciences, 2018, 19, 538.                                     | 4.1 | 11        |
| 29 | Proteomic Analysis of Phytophthora infestans Reveals the Importance of Cell Wall Proteins in<br>Pathogenicity. Molecular and Cellular Proteomics, 2017, 16, 1958-1971.                       | 3.8 | 31        |
| 30 | Isolation of Apoplast. Methods in Molecular Biology, 2017, 1511, 233-240.                                                                                                                    | 0.9 | 5         |
| 31 | Earlier occurrence and increased explanatory power of climate for the first incidence of potato late blight caused by Phytophthora infestans in Fennoscandia. PLoS ONE, 2017, 12, e0177580.  | 2.5 | 26        |
| 32 | Plant Resistance Inducers against Pathogens in Solanaceae Species—From Molecular Mechanisms to<br>Field Application. International Journal of Molecular Sciences, 2016, 17, 1673.            | 4.1 | 61        |
| 33 | Nongenetic Inheritance of Induced Resistance in a Wild Annual Plant. Phytopathology, 2016, 106, 877-883.                                                                                     | 2.2 | 12        |
| 34 | Potassium phosphite combined with reduced doses of fungicides provides efficient protection against potato late blight in large-scale field trials. Crop Protection, 2016, 86, 42-55.        | 2.1 | 70        |
| 35 | Overview and Breeding Strategies of Table Potato Production in Sweden and the Fennoscandian<br>Region. Potato Research, 2016, 59, 279-294.                                                   | 2.7 | 48        |
| 36 | Phytophthora infestans specific phosphorylation patterns and new putative control targets. Fungal Biology, 2016, 120, 631-644.                                                               | 2.5 | 0         |

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Targeted Proteomics Approach for Precision Plant Breeding. Journal of Proteome Research, 2016, 15, 638-646.                                                                                                                                                       | 3.7 | 44        |
| 38 | Effector-driven marker development and cloning of resistance genes against Phytophthora infestans<br>in potato breeding clone SW93-1015. Theoretical and Applied Genetics, 2016, 129, 105-115.                                                                    | 3.6 | 43        |
| 39 | RNAseq and Proteomics for Analysing Complex Oomycete Plant Interactions. Current Issues in<br>Molecular Biology, 2016, 19, 73-88.                                                                                                                                 | 2.4 | 4         |
| 40 | <i>Arabidopsis</i> cytosolic alphaâ€glycan phosphorylase, <scp>PHS</scp> 2, is important during carbohydrate imbalanced conditions. Plant Biology, 2015, 17, 74-80.                                                                                               | 3.8 | 6         |
| 41 | Inoculation of Transgenic Resistant Potato by Phytophthora infestans Affects Host Plant Choice of a<br>Generalist Moth. PLoS ONE, 2015, 10, e0129815.                                                                                                             | 2.5 | 16        |
| 42 | A novel workflow correlating RNA-seq data to Phythophthora infestans resistance levels in wild Solanum species and potato clones. Frontiers in Plant Science, 2015, 6, 718.                                                                                       | 3.6 | 21        |
| 43 | Biosurfactants Have the Potential to Induce Defence Against Phytophthora infestans in Potato.<br>Potato Research, 2015, 58, 83-90.                                                                                                                                | 2.7 | 15        |
| 44 | Salicylic and jasmonic acid pathways are necessary for defence against <i><scp>D</scp>ickeya<br/>solani</i> as revealed by a novel method for Blackleg disease screening of <i>inÂvitro</i> grown<br>potato. Plant Biology, 2015, 17, 1030-1038.                  | 3.8 | 22        |
| 45 | Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts.<br>Journal of Biotechnology, 2015, 204, 17-24.                                                                                                                     | 3.8 | 103       |
| 46 | Comparison of phosphorylation patterns across eukaryotes by discriminative N-gram analysis. BMC<br>Bioinformatics, 2015, 16, 239.                                                                                                                                 | 2.6 | 10        |
| 47 | Integrative Genomic Signatures Of Hepatocellular Carcinoma Derived from Nonalcoholic Fatty Liver<br>Disease. PLoS ONE, 2015, 10, e0124544.                                                                                                                        | 2.5 | 70        |
| 48 | Evaluation and integration of functional annotation pipelines for newly sequenced organisms: the potato genome as a test case. BMC Plant Biology, 2014, 14, 329.                                                                                                  | 3.6 | 42        |
| 49 | Phosphite-induced changes of the transcriptome and secretome in Solanum tuberosum leading to resistance against Phytophthora infestans. BMC Plant Biology, 2014, 14, 254.                                                                                         | 3.6 | 77        |
| 50 | Field-omicsââ,¬â€understanding large-scale molecular data from field crops. Frontiers in Plant Science,<br>2014, 5, 286.                                                                                                                                          | 3.6 | 53        |
| 51 | Activation of defence responses to <i><scp>P</scp>hytophthora infestans</i> in potato by<br><scp>BABA</scp> . Plant Pathology, 2014, 63, 193-202.                                                                                                                 | 2.4 | 53        |
| 52 | Quantitative Label-Free Phosphoproteomics of Six Different Life Stages of the Late Blight Pathogen<br><i>Phytophthora infestans</i> Reveals Abundant Phosphorylation of Members of the CRN Effector<br>Family. Journal of Proteome Research, 2014, 13, 1848-1859. | 3.7 | 26        |
| 53 | Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans in compatible and incompatible interactions. BMC Genomics, 2014, 15, 497.                                                                                             | 2.8 | 77        |
| 54 | Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach. BMC Genomics, 2014, 15, 315.                                                                                                       | 2.8 | 67        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Sugar beet extract induces defence against Phytophthora infestans in potato plants. European Journal<br>of Plant Pathology, 2013, 136, 261-271.                                                                                    | 1.7 | 18        |
| 56 | An Adaptive Alignment Algorithm for Quality-controlled Label-free LC-MS. Molecular and Cellular Proteomics, 2013, 12, 1407-1420.                                                                                                   | 3.8 | 33        |
| 57 | Plant secretome proteomics. Frontiers in Plant Science, 2013, 4, 9.                                                                                                                                                                | 3.6 | 67        |
| 58 | Determination of primary sequence specificity of <i>Arabidopsis</i> MAPKs MPK3 and MPK6 leads to identification of new substrates. Biochemical Journal, 2012, 446, 271-278.                                                        | 3.7 | 58        |
| 59 | Paranoid potato. Plant Signaling and Behavior, 2012, 7, 400-408.                                                                                                                                                                   | 2.4 | 43        |
| 60 | Two thymidine kinases and one multisubstrate deoxyribonucleoside kinase salvage <scp>DNA</scp><br>precursors in <i><scp>A</scp>rabidopsis thaliana</i> . FEBS Journal, 2012, 279, 3889-3897.                                       | 4.7 | 27        |
| 61 | Induced resistance in potato to Phytphthora infestans—effects of BABA in greenhouse and field tests<br>with different potato varieties. European Journal of Plant Pathology, 2010, 127, 171-183.                                   | 1.7 | 57        |
| 62 | Trichoderma viride cellulase induces resistance to the antibiotic pore-forming peptide alamethicin<br>associated with changes in the plasma membrane lipid composition of tobacco BY-2 cells. BMC Plant<br>Biology, 2010, 10, 274. | 3.6 | 26        |
| 63 | Changes in external pH rapidly alter plant gene expression and modulate auxin and elicitor responses.<br>Plant, Cell and Environment, 2010, 33, no-no.                                                                             | 5.7 | 118       |
| 64 | Convergence and specificity in the Arabidopsis MAPK nexus. Trends in Plant Science, 2010, 15, 106-113.                                                                                                                             | 8.8 | 228       |
| 65 | Phosphoproteomic analysis of nuclei-enriched fractions from Arabidopsis thaliana. Journal of<br>Proteomics, 2009, 72, 439-451.                                                                                                     | 2.4 | 84        |
| 66 | An Arabidopsis Protein Phosphorylated in Response to Microbial Elicitation, AtPHOS32, Is a Substrate of MAP Kinases 3 and 6. Journal of Biological Chemistry, 2008, 283, 10493-10499.                                              | 3.4 | 77        |
| 67 | A multisubstrate deoxyribonucleoside kinase from plants. Nucleic Acids Symposium Series, 2008, 52, 489-490.                                                                                                                        | 0.3 | 3         |
| 68 | Enrichment of Phosphoproteins and Phosphopeptide Derivatization Identify Universal Stress Proteins<br>in Elicitor-Treated <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2008, 21, 1275-1284.                          | 2.6 | 32        |
| 69 | Phosphorylation sites of Arabidopsis MAP kinase substrate 1 (MKS1). Biochimica Et Biophysica Acta -<br>Proteins and Proteomics, 2007, 1774, 1156-1163.                                                                             | 2.3 | 17        |
| 70 | The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO Journal, 2005, 24, 2579-2589.                                                                                                                        | 7.8 | 480       |
| 71 | Arabidopsis MYB68 in development and responses to environmental cues. Plant Science, 2004, 167, 1099-1107.                                                                                                                         | 3.6 | 83        |
| 72 | Modulation of CYP79 Genes and Glucosinolate Profiles in Arabidopsis by Defense Signaling Pathways.<br>Plant Physiology, 2003, 131, 298-308.                                                                                        | 4.8 | 314       |

| #  | Article                                                                                                                                                                   | IF                      | CITATIONS      |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|
| 73 | Chapter four Localization of plant myrosinases and glucosinolates. Recent Advances in Phytochemistry, 2003, , 79-99.                                                      | 0.5                     | 40             |
| 74 | Complex Formation of Myrosinase Isoenzymes in Oilseed Rape Seeds Are Dependent on the Presence of<br>Myrosinase-Binding Proteins. Plant Physiology, 2002, 129, 1592-1599. | 4.8                     | 65             |
| 75 | Characterization of transgenic Arabidopsis thaliana with metabolically engineered high levels of p<br>-hydroxybenzylglucosinolate. Planta, 2001, 212, 612-618.            | 3.2                     | 45             |
| 76 | The myrosinase-glucosinolate system in the interaction between Leptosphaeria maculans and Brassica<br>napus. Molecular Plant Pathology, 2001, 2, 281-286.                 | 4.2                     | 15             |
| 77 | Update on glucosinolate metabolism and transport. Plant Physiology and Biochemistry, 2001, 39, 743-758.                                                                   | 5.8                     | 155            |
| 78 | Different Myrosinase and Idioblast Distribution in Arabidopsis and <i>Brassica napus</i> Â. Plant<br>Physiology, 2001, 127, 1750-1763.                                    | 4.8                     | 205            |
| 79 | Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Molecular Biology, 2000, 42, 93-114.                                                       | 3.9                     | 491            |
| 80 | Myrosinase: gene family evolution and herbivore defense in Brassicaceae. , 2000, , 93-113.                                                                                |                         | 112            |
| 81 | Arabidopsis MAP Kinase 4 Negatively Regulates Systemic Acquired Resistance. Cell, 2000, 103, 1111-1120.                                                                   | 28.9                    | 946            |
| 82 | Age-dependent wound induction of a myrosinase-associated protein from oilseed rape (Brassica) Tj ETQq0 0 0 rg                                                             | BT <sub>3</sub> /Qverlc | ock 10 Tf 50 3 |

| 83 | Co-localization of myrosinase- and myrosinase-binding proteins in grains of myrosin cells in cotyledon of Brassica napus seedlings. Plant Physiology and Biochemistry, 1998, 36, 583-590.                                                                                                                                 | 5.8 | 17 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 84 | Regulation of the Wound-Induced Myrosinase-Associated Protein Transcript in Brassica Napus Plants.<br>FEBS Journal, 1997, 247, 963-971.                                                                                                                                                                                   | 0.2 | 46 |
| 85 | Invited Mini-Review Research Topic: Utilization of Protoplasts to Facilitate Gene Editing in Plants:<br>Schemes for In Vitro Shoot Regeneration From Tissues and Protoplasts of Potato and Rapeseed:<br>Implications of Bioengineering Such as Gene Editing of Broad-Leaved Plants. Frontiers in Genome<br>Editing, O. 4. | 5.2 | 4  |