Christian K Feld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7499519/publications.pdf

Version: 2024-02-01

53 papers 6,042 citations

32 h-index 52 g-index

54 all docs

54 docs citations

54 times ranked 8457 citing authors

#	Article	IF	CITATIONS
1	Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation, 2010, 19, 2873-2893.	2.6	759
2	The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future. Science of the Total Environment, 2010, 408, 4007-4019.	8.0	756
3	Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodiversity and Conservation, 2010, 19, 2921-2947.	2.6	385
4	Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology and Evolution, 2020, 4, 1060-1068.	7.8	336
5	Quantifying the Contribution of Organisms to the Provision of Ecosystem Services. BioScience, 2009, 59, 223-235.	4.9	312
6	Protecting and restoring Europe's waters: An analysis of the future development needs of the Water Framework Directive. Science of the Total Environment, 2019, 658, 1228-1238.	8.0	295
7	Indicators of biodiversity and ecosystem services: a synthesis across ecosystems and spatial scales. Oikos, 2009, 118, 1862-1871.	2.7	225
8	From Natural to Degraded Rivers and Back Again. Advances in Ecological Research, 2011, 44, 119-209.	2.7	207
9	The Development of a System to Assess the Ecological Quality of Streams Based on Macroinvertebrates – Design of the Sampling Programme within the AQEM Project. International Review of Hydrobiology, 2003, 88, 345-361.	0.9	184
10	Community structure or function: effects of environmental stress on benthic macroinvertebrates at different spatial scales. Freshwater Biology, 2007, 52, 1380-1399.	2.4	181
11	Analysing the impact of multiple stressors in aquatic biomonitoring data: A †cookbook†with applications in R. Science of the Total Environment, 2016, 573, 1320-1339.	8.0	153
12	A new method for assessing the impact of hydromorphological degradation on the macroinvertebrate fauna of five German stream types. Hydrobiologia, 2004, 516, 107-127.	2.0	149
13	Identifying and prioritising services in European terrestrial and freshwater ecosystems. Biodiversity and Conservation, 2010, 19, 2791-2821.	2.6	146
14	Ecosystem services and biodiversity conservation: concepts and a glossary. Biodiversity and Conservation, 2010, 19, 2773-2790.	2.6	137
15	Ecological status assessment of European lakes: a comparison of metrics for phytoplankton, macrophytes, benthic invertebrates and fish. Hydrobiologia, 2013, 704, 57-74.	2.0	123
16	Multiple stressors determine river ecological status at the European scale: Towards an integrated understanding of river status deterioration. Global Change Biology, 2021, 27, 1962-1975.	9.5	114
17	Evaluating riparian solutions to multiple stressor problems in river ecosystems — A conceptual study. Water Research, 2018, 139, 381-394.	11.3	105
18	Upstream river morphology and riparian land use overrule local restoration effects on ecological status assessment. Hydrobiologia, 2013, 704, 489-501.	2.0	102

#	Article	IF	CITATIONS
19	Assessing streams in Germany with benthic invertebrates: Development of a multimetric invertebrate based assessment system. Limnologica, 2004, 34, 416-432.	1.5	100
20	Indicators for biodiversity and ecosystem services: towards an improved framework for ecosystems assessment. Biodiversity and Conservation, 2010, 19, 2895-2919.	2.6	91
21	Effects of physico-chemistry, land use and hydromorphology on three riverine organism groups: a comparative analysis with monitoring data from Germany and Austria. Hydrobiologia, 2013, 704, 389-415.	2.0	89
22	Assessing streams in Germany with benthic invertebrates: selection of candidate metrics. Limnologica, 2004, 34, 398-415.	1.5	88
23	Research needs for incorporating the ecosystem service approach into EU biodiversity conservation policy. Biodiversity and Conservation, 2010, 19, 2979-2994.	2.6	82
24	Response of three lotic assemblages to riparian and catchmentâ€scale land use: implications for designing catchment monitoring programmes. Freshwater Biology, 2013, 58, 715-729.	2.4	81
25	Additive effects prevail: The response of biota to multiple stressors in an intensively monitored watershed. Science of the Total Environment, 2017, 593-594, 27-35.	8.0	79
26	Biodiversity of traits and species both show weak responses to hydromorphological alteration in lowland river macroinvertebrates. Freshwater Biology, 2014, 59, 233-248.	2.4	76
27	Disentangling the effects of land use and geo-climatic factors on diversity in European freshwater ecosystems. Ecological Indicators, 2016, 60, 71-83.	6.3	66
28	Assessment and recovery of European water bodies: key messages from the WISER project. Hydrobiologia, 2013, 704, 1-9.	2.0	59
29	Identification and measure of hydromorphological degradation in Central European lowland streams. Hydrobiologia, 2004, 516, 69-90.	2.0	56
30	Typology of streams in Germany based on benthic invertebrates: Ecoregions, zonation, geology and substrate. Limnologica, 2004, 34, 379-389.	1.5	46
31	Effects of hydro- and thermopeaking on benthic macroinvertebrate drift. Science of the Total Environment, 2016, 573, 1472-1480.	8.0	45
32	Genetic diversity and dispersal potential of the stonefly Dinocras cephalotes in a central European low mountain range. Freshwater Science, 2014, 33, 181-192.	1.8	39
33	Experiences in Regional Cross Border Co-operation in River Management. Comparing Three Cases at the Dutch–German Border. Water Resources Management, 2010, 24, 2647-2672.	3.9	33
34	Making waves. Bridging theory and practice towards multiple stressor management in freshwater ecosystems. Water Research, 2021, 196, 116981.	11.3	32
35	Diagnosing the causes of river deterioration using stressor-specific metrics. Science of the Total Environment, 2019, 651, 1105-1113.	8.0	31
36	The indication of morphological degradation of streams and rivers using Simuliidae. Limnologica, 2002, 32, 273-288.	1.5	28

#	Article	IF	Citations
37	Using the salinity preferences of benthic macroinvertebrates to classify running waters in brackish marshes in Germany. Ecological Indicators, 2009, 9, 837-847.	6.3	27
38	Identification and interaction of multiple stressors in central European lowland rivers. Science of the Total Environment, 2017, 603-604, 148-154.	8.0	27
39	Macroinvertebrate drift response to hydropeaking: <scp>A</scp> n experimental approach to assess the effect of varying ramping velocities. Ecohydrology, 2019, 12, e2032.	2.4	27
40	Renaturalization of streams and rivers $\hat{a}\in$ " the special importance of integrated ecological methods in measurement of success. An example from Saxony-Anhalt (Germany). Limnologica, 2004, 34, 249-263.	1.5	26
41	Hidden parasite diversity in a European freshwater system. Scientific Reports, 2020, 10, 2694.	3.3	24
42	Lessons from practice: assessing early progress and success in river rehabilitation. Hydrobiologia, 2010, 655, 1-14.	2.0	19
43	Is the EU WFD suitable to support IWRM planning in non-European countries? Lessons learnt from the introduction of IWRM and River Basin Management in Mongolia. Environmental Science and Policy, 2017, 75, 28-37.	4.9	19
44	Societal benefits of river restoration – Implications from social media analysis. Ecosystem Services, 2021, 50, 101317.	5.4	13
45	Differentiating the effects of climate and land use change on European biodiversity: A scenario analysis. Ambio, 2017, 46, 277-290.	5.5	12
46	Does river restoration increase ecosystem services?. Ecosystem Services, 2020, 46, 101206.	5.4	12
47	A framework to diagnose the causes of river ecosystem deterioration using biological symptoms. Journal of Applied Ecology, 2020, 57, 2271-2284.	4.0	11
48	Eye fluke infection changes diet composition in juvenile European perch (Perca fluviatilis). Scientific Reports, 2021, 11, 3440.	3.3	10
49	Effects of conventionally-treated and ozonated wastewater on mortality, physiology, body length, and behavior of embryonic and larval zebrafish (Danio rerio). Environmental Pollution, 2021, 286, 117241.	7.5	8
50	Evaluating the biological validity of European river typology systems with least disturbed benthic macroinvertebrate communities. Science of the Total Environment, 2022, 842, 156689.	8.0	7
51	Parasite infection influences the biomarker response and locomotor activity of Gammarus fossarum exposed to conventionally-treated wastewater. Ecotoxicology and Environmental Safety, 2022, 236, 113474.	6.0	6
52	Stream types of the Lake Kinneret (Sea of Galilee) watershed. International Journal of River Basin Management, 2018, 16, 133-143.	2.7	4
53	Application and validation of a new approach for modelling benthic invertebrate dispersal: First colonisation of a former open sewer system. Science of the Total Environment, 2017, 609, 875-884.	8.0	0