Anke Lange

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7499503/publications.pdf Version: 2024-02-01

ANKELANCE

#	Article	IF	CITATIONS
1	Molecular Mechanisms of Toxicity of Silver Nanoparticles in Zebrafish Embryos. Environmental Science & Technology, 2013, 47, 8005-8014.	4.6	198
2	The Role of Omics in the Application of Adverse Outcome Pathways for Chemical Risk Assessment. Toxicological Sciences, 2017, 158, 252-262.	1.4	161
3	Sexual Reprogramming and Estrogenic Sensitization in Wild Fish Exposed to Ethinylestradiol. Environmental Science & Technology, 2009, 43, 1219-1225.	4.6	119
4	Bioassay-Directed Identification of Novel Antiandrogenic Compounds in Bile of Fish Exposed to Wastewater Effluents. Environmental Science & Technology, 2011, 45, 10660-10667.	4.6	115
5	Evidence for the existence of a functional Kiss1/Kiss1 receptor pathway in fish. Peptides, 2008, 29, 57-64.	1.2	112
6	Comparative responsiveness to natural and synthetic estrogens of fish species commonly used in the laboratory and field monitoring. Aquatic Toxicology, 2012, 109, 250-258.	1.9	88
7	Differing Species Responsiveness of Estrogenic Contaminants in Fish Is Conferred by the Ligand Binding Domain of the Estrogen Receptor. Environmental Science & Technology, 2014, 48, 5254-5263.	4.6	77
8	Altered Sexual Development in Roach (Rutilus rutilus) Exposed to Environmental Concentrations of the Pharmaceutical 171±-Ethinylestradiol and Associated Expression Dynamics of Aromatases and Estrogen Receptors. Toxicological Sciences, 2008, 106, 113-123.	1.4	76
9	Implications of Persistent Exposure to Treated Wastewater Effluent for Breeding in Wild Roach (<i>Rutilus rutilus</i>) Populations. Environmental Science & Technology, 2011, 45, 1673-1679.	4.6	75
10	Probiotics and competitive exclusion of pathogens in shrimp aquaculture. Reviews in Aquaculture, 2021, 13, 324-352.	4.6	74
11	Alterations of tissue glutathione levels and metallothionein mRNA in rainbow trout during single and combined exposure to cadmium and zinc. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2002, 131, 231-243.	1.3	70
12	Metabolomics Reveals Target and Off-Target Toxicities of a Model Organophosphate Pesticide to Roach (Rutilus rutilus): Implications for Biomonitoring. Environmental Science & Technology, 2011, 45, 3759-3767.	4.6	68
13	A new approach for plasma (xeno)metabolomics based on solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionisation mass spectrometry. Journal of Chromatography A, 2014, 1365, 72-85.	1.8	63
14	The Xenometabolome and Novel Contaminant Markers in Fish Exposed to a Wastewater Treatment Works Effluent. Environmental Science & Technology, 2012, 46, 9080-9088.	4.6	57
15	Functional Associations between Two Estrogen Receptors, Environmental Estrogens, and Sexual Disruption in the Roach (Rutilus rutilus). Environmental Science & Technology, 2007, 41, 3368-3374.	4.6	54
16	Understanding the Molecular Basis for Differences in Responses of Fish Estrogen Receptor Subtypes to Environmental Estrogens. Environmental Science & Technology, 2015, 49, 7439-7447.	4.6	53
17	Molecular mechanisms and tissue targets of brominated flame retardants, BDE-47 and TBBPA, in embryo-larval life stages of zebrafish (Danio rerio). Aquatic Toxicology, 2019, 209, 99-112.	1.9	50
18	Functional distinctions associated with the diversity of sex steroid hormone receptors ESR and AR. Journal of Steroid Biochemistry and Molecular Biology, 2018, 184, 38-46.	1.2	48

Anke Lange

#	Article	IF	CITATIONS
19	Environmental Health Impacts of Equine Estrogens Derived from Hormone Replacement Therapy. Environmental Science & Technology, 2009, 43, 3897-3904.	4.6	46
20	Disruption of the Prostaglandin Metabolome and Characterization of the Pharmaceutical Exposome in Fish Exposed to Wastewater Treatment Works Effluent As Revealed by Nanoflow-Nanospray Mass Spectrometry-Based Metabolomics. Environmental Science & Technology, 2017, 51, 616-624.	4.6	46
21	Concentrating mixtures of neuroactive pharmaceuticals and altered neurotransmitter levels in the brain of fish exposed to a wastewater effluent. Science of the Total Environment, 2018, 621, 782-790.	3.9	46
22	Effects of the lipid regulating drug clofibric acid on PPARα-regulated gene transcript levels in common carp (Cyprinus carpio) at pharmacological and environmental exposure levels. Aquatic Toxicology, 2015, 161, 127-137.	1.9	37
23	Effects of Pharmaceuticals on the Expression of Genes Involved in Detoxification in a Carp Primary Hepatocyte Model. Environmental Science & Technology, 2012, 46, 6306-6314.	4.6	36
24	Bioavailability of the imidazole antifungal agent clotrimazole and its effects on key biotransformation genes in the common carp (Cyprinus carpio). Aquatic Toxicology, 2014, 152, 57-65.	1.9	35
25	Establishment of estrogen receptor 1 (ESR1)â€knockout medaka: <scp>ESR</scp> 1 is dispensable for sexual development and reproduction in medaka, <i>Oryzias latipes</i> . Development Growth and Differentiation, 2017, 59, 552-561.	0.6	32
26	Evaluation of a carp primary hepatocyte culture system for screening chemicals for oestrogenic activity. Aquatic Toxicology, 2009, 94, 195-203.	1.9	29
27	Distinguishing between the metabolome and xenobiotic exposome in environmental field samples analysed by direct-infusion mass spectrometry based metabolomics and lipidomics. Metabolomics, 2014, 10, 1050-1058.	1.4	29
28	Environmental chemicals active as human antiandrogens do not activate a stickleback androgen receptor but enhance a feminising effect of oestrogen in roach. Aquatic Toxicology, 2015, 168, 48-59.	1.9	25
29	Cloning, expression and functional characterization of carp, <i>Cyprinus carpio</i> , estrogen receptors and their differential activations by estrogens. Journal of Applied Toxicology, 2013, 33, 41-49.	1.4	22
30	Ontogeny of sexual development in the roach (<i>Rutilus rutilus</i>) and its interrelationships with growth and age. Journal of Morphology, 2008, 269, 884-895.	0.6	21
31	Evolution of estrogen receptors in ray-finned fish and their comparative responses to estrogenic substances. Journal of Steroid Biochemistry and Molecular Biology, 2016, 158, 189-197.	1.2	18
32	Expression dynamics of genes in the hypothalamic-pituitary-thyroid (HPT) cascade and their responses to 3,3′,5-triiodo-l-thyronine (T3) highlights potential vulnerability to thyroid-disrupting chemicals in zebrafish (Danio rerio) embryo-larvae. Aquatic Toxicology, 2020, 225, 105547.	1.9	18
33	Early life exposure to ethinylestradiol enhances subsequent responses to environmental estrogens measured in a novel transgenic zebrafish. Scientific Reports, 2018, 8, 2699.	1.6	15
34	Characterization of <i>Oryzias latipes</i> glucocorticoid receptors and their unique response to progestins. Journal of Applied Toxicology, 2015, 35, 302-309.	1.4	13
35	Development of a common carp (Cyprinus carpio) pregnane X receptor (cPXR) transactivation reporter assay and its activation by azole fungicides and pharmaceutical chemicals. Toxicology in Vitro, 2017, 41, 114-122.	1.1	13
36	Estimating sex ratios in Caribbean hawksbill turtles: testosterone levels and climate effects. Aquatic Biology, 2013, 18, 9-19.	0.5	13

Anke Lange

#	Article	IF	CITATIONS
37	Hepatic transcriptional responses to copper in the three-spined stickleback are affected by their pollution exposure history. Aquatic Toxicology, 2017, 184, 26-36.	1.9	12
38	Effects of Exposure to WwTW Effluents over Two Generations on Sexual Development and Breeding in Roach <i>Rutilus rutilus</i> . Environmental Science & Technology, 2015, 49, 12994-13002.	4.6	11
39	Social dominance and rainfall predict telomere dynamics in a cooperative aridâ€zone bird. Molecular Ecology, 2022, 31, 6141-6154.	2.0	10
40	Fish toxicogenomics. Advances in Experimental Biology, 2008, 2, 75-325.	0.1	9
41	The roach (Rutilus rutilus) as a sentinel for assessing endocrine disruption. Environmental Sciences: an International Journal of Environmental Physiology and Toxicology, 2007, 14, 235-53.	0.1	9
42	Using molecular and crowdâ€sourcing methods to assess breeding ground diet of a migratory brood parasite of conservation concern. Journal of Avian Biology, 2020, 51, .	0.6	8
43	A newly developed genetic sex marker and its application to understanding chemically induced feminisation in roach (<i>Rutilus rutilus</i>). Molecular Ecology Resources, 2020, 20, 1007-1022.	2.2	6
44	Ontogeny and Dynamics of the Gonadal Development, Embryogenesis, and Gestation in <i>Xenotoca eiseni</i> (Cyprinodontiformes, Goodeidae). Sexual Development, 2019, 13, 297-310.	1.1	3
45	Development of the electric organ in embryos and larvae of the knifefish, Brachyhypopomus gauderio. Developmental Biology, 2020, 466, 99-108.	0.9	3
46	Characterization of G protein oupled estrogen receptors in Japanese medaka, <scp><i>Oryzias latipes</i></scp> . Journal of Applied Toxicology, 2021, 41, 1390-1399.	1.4	3
47	Health Effects and Life Stage Sensitivities in Zebrafish Exposed to an Estrogenic Wastewater Treatment Works Effluent. Frontiers in Endocrinology, 2021, 12, 666656.	1.5	2
48	Developmental exposure window influences silver toxicity but does not affect the susceptibility to subsequent exposures in zebrafish embryos. Histochemistry and Cell Biology, 2020, 154, 579-595.	0.8	2
49	Fish hepatocyte cultures as an alternative to in vivo tests for screening oestrogen receptor active chemicals. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 146, S72.	0.8	1
50	Health impacts of exposure to environmental oestrogens in fish. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2012, 163, S3.	0.8	1
51	Investigating drug-metabolising cytochrome P450 (cyp) isoforms in a fish hepatocyte model. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2010, 157, S25-S26.	0.8	0
52	The xenometabolome and novel contaminant biomarkers in fish exposed to a wastewater treatment works effluent. Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative Physiology, 2012, 163, S51.	0.8	0
53	Effects of maternal exposure to environmentally relevant concentrations of 17î±-ethinyloestradiol in a live bearing freshwater fish, Xenotoca eiseni (Cyprinodontiformes, Goodeidae). Aquatic Toxicology, 2021, 232, 105746.	1.9	0