
Edwin Haas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7498930/publications.pdf Version: 2024-02-01

FDWIN HAAS

#	Article	IF	CITATIONS
1	Climate change impact and adaptation for wheat protein. Global Change Biology, 2019, 25, 155-173.	9.5	312
2	Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models. Field Crops Research, 2012, 133, 23-36.	5.1	269
3	A global inventory of N ₂ O emissions from tropical rainforest soils using a detailed biogeochemical model. Global Biogeochemical Cycles, 2007, 21, .	4.9	136
4	LandscapeDNDC: a process model for simulation of biosphere–atmosphere–hydrosphere exchange processes at site and regional scale. Landscape Ecology, 2013, 28, 615-636.	4.2	126
5	Global wheat production with 1.5 and 2.0°C above preâ€industrial warming. Global Change Biology, 2019, 25, 1428-1444.	9.5	107
6	Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations. PLoS ONE, 2016, 11, e0151782.	2.5	78
7	Biomass production potential from <i><scp>P</scp>opulus</i> short rotation systems in <scp>R</scp> omania. GCB Bioenergy, 2012, 4, 642-653.	5.6	53
8	A new LandscapeDNDC biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems. Plant and Soil, 2015, 386, 125-149.	3.7	52
9	A modeling study on mitigation of N2O emissions and NO3 leaching at different agricultural sites across Europe using LandscapeDNDC. Science of the Total Environment, 2016, 553, 128-140.	8.0	52
10	The SCALEX Campaign: Scale-Crossing Land Surface and Boundary Layer Processes in the TERENO-preAlpine Observatory. Bulletin of the American Meteorological Society, 2017, 98, 1217-1234.	3.3	49
11	Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables. Climate Research, 2015, 65, 141-157.	1.1	43
12	Variability of effects of spatial climate data aggregation on regional yield simulation by crop models. Climate Research, 2015, 65, 53-69.	1.1	39
13	Environmental impacts of bioenergy wood production from poplar shortâ€rotation coppice grown at a marginal agricultural site in Germany. GCB Bioenergy, 2017, 9, 1207-1221.	5.6	38
14	Spatial sampling of weather data for regional crop yield simulations. Agricultural and Forest Meteorology, 2016, 220, 101-115.	4.8	35
15	Comparison of the DNDC, LandscapeDNDC and IAP-N-GAS models for simulating nitrous oxide and nitric oxide emissions from the winter wheat–summer maize rotation system. Agricultural Systems, 2015, 140, 1-10.	6.1	32
16	Simulation of N ₂ O emissions and nitrate leaching from plastic mulch radish cultivation with LandscapeDNDC. Ecological Research, 2014, 29, 441-454.	1.5	31
17	N2O emissions and NO3â^' leaching from two contrasting regions in Austria and influence of soil, crops and climate: a modelling approach. Nutrient Cycling in Agroecosystems, 2019, 113, 95-111.	2.2	31
18	Estimation and mitigation of N2O emission and nitrate leaching from intensive crop cultivation in the Haean catchment, South Korea. Science of the Total Environment, 2015, 529, 40-53.	8.0	30

Edwin Haas

#	Article	IF	CITATIONS
19	The implication of input data aggregation on up-scaling soil organic carbon changes. Environmental Modelling and Software, 2017, 96, 361-377.	4.5	28
20	How well can we assess impacts of agricultural land management changes on the total greenhouse gas balance (CO2, CH4 and N2O) of tropical rice-cropping systems with a biogeochemical model?. Agriculture, Ecosystems and Environment, 2016, 224, 104-115.	5.3	27
21	Impact analysis of climate data aggregation at different spatial scales on simulated net primary productivity for croplands. European Journal of Agronomy, 2017, 88, 41-52.	4.1	27
22	Evaluating the precision of eight spatial sampling schemes in estimating regional means of simulated yield for two crops. Environmental Modelling and Software, 2016, 80, 100-112.	4.5	26
23	The response of process-based agro-ecosystem models to within-field variability in site conditions. Field Crops Research, 2018, 228, 1-19.	5.1	25
24	YIELDSTAT – A spatial yield model for agricultural crops. European Journal of Agronomy, 2014, 52, 33-46.	4.1	24
25	Management and spatial resolution effects on yield and water balance at regional scale in crop models. Agricultural and Forest Meteorology, 2019, 275, 184-195.	4.8	22
26	Environmental change impacts on the C- and N-cycle of European forests: a model comparison study. Biogeosciences, 2013, 10, 1751-1773.	3.3	21
27	Importance of soil NO emissions for the total atmospheric NOx budget of Saxony, Germany. Atmospheric Environment, 2017, 152, 61-76.	4.1	21
28	Nitrate leaching and soil nitrous oxide emissions diminish with time in a hybrid poplar shortâ€rotation coppice in southern Germany. GCB Bioenergy, 2017, 9, 613-626.	5.6	20
29	Sustainable intensification of crop residue exploitation for bioenergy: Opportunities and challenges. GCB Bioenergy, 2020, 12, 71-89.	5.6	20
30	Rejecting hydro-biogeochemical model structures by multi-criteria evaluation. Environmental Modelling and Software, 2017, 93, 1-12.	4.5	19
31	Historic nitrogen deposition determines future climate change effects on nitrogen retention in temperate forests. Climatic Change, 2017, 144, 221-235.	3.6	19
32	Simulation of CO2 Fluxes in European Forest Ecosystems with the Coupled Soil-Vegetation Process Model "LandscapeDNDC― Forests, 2015, 6, 1779-1809.	2.1	18
33	Exploring impacts of vegetated buffer strips on nitrogen cycling using a spatially explicit hydro-biogeochemical modeling approach. Environmental Modelling and Software, 2017, 90, 55-67.	4.5	17
34	Long term impact of residue management on soil organic carbon stocks and nitrous oxide emissions from European croplands. Science of the Total Environment, 2022, 836, 154932.	8.0	17
35	Modelling Agroforestry's Contributions to People—A Review of Available Models. Agronomy, 2021, 11, 2106.	3.0	16
36	Parameter-induced uncertainty quantification of soil N ₂ O, NO and CO ₂ emission from HA¶glwald spruce forest (Germany) using the LandscapeDNDC model. Biogeosciences, 2012, 9, 3983-3998.	3.3	15

Edwin Haas

#	Article	IF	CITATIONS
37	Uncertainties in Scaling-Up Crop Models for Large-Area Climate Change Impact Assessments. ICP Series on Climate Change Impacts, Adaptation, and Mitigation, 2015, , 261-277.	0.4	11
38	Estimating nitrogen flows of agricultural soils at a landscape level – A modelling study of the Upper Enns Valley, a long-term socio-ecological research region in Austria. Science of the Total Environment, 2019, 665, 275-289.	8.0	11
39	Closing the N-Budget: How Simulated Groundwater-Borne Nitrate Supply Affects Plant Growth and Greenhouse Gas Emissions on Temperate Grassland. Atmosphere, 2018, 9, 407.	2.3	5
40	Beyond livestock carrying capacity in the Sahelian and Sudanian zones of West Africa. Scientific Reports, 2021, 11, 22094.	3.3	5
41	Application and intercomparison of the RADM2 and RACM chemistry mechanism including a new isoprene degradation scheme within the regional meteorology-chemistry-model MCCM. International Journal of Environment and Pollution, 2010, 40, 136.	0.2	4
42	Evaluation of new flux attribution methods for mapping N 2 O emissions at the landscape scale. Agriculture, Ecosystems and Environment, 2017, 247, 9-22.	5.3	4
43	Evaluation of LandscapeDNDC Model Predictions of CO2 and N2O Fluxes from an Oak Forest in SE England. Forests, 2021, 12, 1517.	2.1	4
44	Modeling gas exchange and biomass production in West African Sahelian and Sudanian ecological zones. Geoscientific Model Development, 2021, 14, 3789-3812.	3.6	3
45	Parameter-Induced Uncertainty Quantification of Regional N ₂ O Emissions and NO ₃ Leaching using the Biogeochemical Model LandscapeDNDC. Advances in Agricultural Systems Modeling, 0, , 149-171.	0.3	2
46	Modeling Intra―and Interannual Variability of BVOC Emissions From Maize, Oil‣eed Rape, and Ryegrass. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	2
47	Improving efficiency of a statistical analysis of complex ecological models, when using the statistical software R by parallelising tasks with Rmpi. Ecological Informatics, 2013, 15, 53-57.	5.2	1
48	Direct N2O emission from agricultural soils in Poland between 1960 and 2009. Regional Environmental Change, 2014, 14, 1073-1082.	2.9	1
49	Simulation of Land Management Effects on Soil N2O Emissions Using a Coupled Hydrology-Biogeochemistry Model on the Landscape Scale. , 2015, , 2207-2231.		0