List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7498793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolic gene expression and centelloside production in elicited Centella asiatica hairy root cultures. Industrial Crops and Products, 2022, 184, 114988.	2.5	16
2	Improved biotechnological production of paclitaxel in Taxus media cell cultures by the combined action of coronatine and calix[8]arenes. Plant Physiology and Biochemistry, 2021, 163, 68-75.	2.8	25
3	Effect of gamma rays and colchicine on silymarin production in cell suspension cultures of Silybum marianum: A transcriptomic study of key genes involved in the biosynthetic pathway. Gene, 2021, 790, 145700.	1.0	3
4	Transfecting Taxus � media Protoplasts to Study Transcription Factors BIS2 and TSAR2 as Activators o Taxane-Related Genes. Plant and Cell Physiology, 2020, 61, 576-583.	of 1.5	7
5	Production of Encecalin in Cell Cultures and Hairy Roots of Helianthella quinquenervis (Hook.) A. Gray. Molecules, 2020, 25, 3231.	1.7	3
6	A Novel Hydroxylation Step in the Taxane Biosynthetic Pathway: A New Approach to Paclitaxel Production by Synthetic Biology. Frontiers in Bioengineering and Biotechnology, 2020, 8, 410.	2.0	30
7	Biotechnological production of ruscogenins in plant cell and organ cultures of Ruscus aculeatus. Plant Physiology and Biochemistry, 2019, 141, 133-141.	2.8	4
8	Genomic methylation in plant cell cultures: A barrier to the development of commercial longâ€ŧerm biofactories. Engineering in Life Sciences, 2019, 19, 872-879.	2.0	23
9	Physiological and anatomical studies of two wheat cultivars irrigated with magnetic water under drought stress conditions. Plant Physiology and Biochemistry, 2019, 135, 480-488.	2.8	45
10	Specialized Plant Metabolism Characteristics and Impact on Target Molecule Biotechnological Production. Molecular Biotechnology, 2018, 60, 169-183.	1.3	59
11	Biotechnological Production of Pharmaceuticals and Biopharmaceuticals in Plant Cell and Organ Cultures. Current Medicinal Chemistry, 2018, 25, 3577-3596.	1.2	50
12	Effect of in vitro morphogenesis on the production of podophyllotoxin derivatives in callus cultures of Linum album. Journal of Plant Physiology, 2018, 228, 47-58.	1.6	17
13	Advances in the Regulation of In Vitro Paclitaxel Production: Methylation of a Y-Patch Promoter Region Alters BAPT Gene Expression in Taxus Cell Cultures. Plant and Cell Physiology, 2018, 59, 2255-2267.	1.5	15
14	Comparing aryltetralin lignan accumulation patterns in four biotechnological systems of Linum album. Journal of Plant Physiology, 2018, 228, 197-207.	1.6	12
15	Taxol from Corylus avellana: paving the way for a new source of this anti-cancer drug. Plant Cell, Tissue and Organ Culture, 2017, 129, 1-16.	1.2	42
16	Viability-reducing activity of Coryllus avellana L. extracts against human cancer cell lines. Biomedicine and Pharmacotherapy, 2017, 89, 565-572.	2.5	15
17	Isolation of the antibiotic methyl (R,E)-3-(1-hydroxy-4-oxocyclopent-2-en-1-yl)-acrylate EA-2801 from Trichoderma atroviridae. Journal of Antibiotics, 2017, 70, 1053-1056.	1.0	7
18	Secondary metabolites profiling of Dracocephalum kotschyi Boiss at three phenological stages using uni- and multivariate methods. Journal of Applied Research on Medicinal and Aromatic Plants, 2016, 3, 177-185.	0.9	14

#	Article	IF	CITATIONS
19	Essential oil variation in wild-growing populations of Salvia reuterana Boiss. collected from Iran: Using GC–MS and multivariate analysis. Industrial Crops and Products, 2016, 81, 180-190.	2.5	46
20	Plant Anti-cancer Agents and their Biotechnological Production in Plant Cell Biofactories. Current Medicinal Chemistry, 2016, 23, 4418-4441.	1.2	11
21	Genetic Transformation of Artemisia carvifolia Buch with rol Genes Enhances Artemisinin Accumulation. PLoS ONE, 2015, 10, e0140266.	1.1	47
22	Taxane production induced by methyl jasmonate in free and immobilized cell cultures of Mexican yew (Taxus globosa Schltdl). Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	9
23	Enhanced artemisinin yield by expression of rol genes in Artemisia annua. Malaria Journal, 2015, 14, 424.	0.8	39
24	Development of a hazel cell culture-based paclitaxel and baccatin III production process on a benchtop scale. Journal of Biotechnology, 2015, 195, 93-102.	1.9	22
25	Optimization of a liquid chromatography-tandem mass spectrometry method for the quantification of traces of taxanes in a Corylus avellana cell suspension medium. RSC Advances, 2015, 5, 17976-17983.	1.7	3
26	Perfluorodecalin-supported system enhances taxane production in hairy root cultures of Taxus xÂmedia var. Hicksii carrying a taxadiene synthase transgene. Plant Cell, Tissue and Organ Culture, 2015, 120, 1051-1059.	1.2	35
27	Changes in gene transcription and taxane production in elicited cell cultures of Taxus×media and Taxus globosa. Phytochemistry, 2015, 117, 174-184.	1.4	47
28	Assessing factors that affect the growth of Corylus avellana cell suspension cultures: a statistical approach. In Vitro Cellular and Developmental Biology - Plant, 2015, 51, 530-538.	0.9	15
29	Paclitaxel production and PAL activity in hairy root cultures of Taxus x media var. Hicksii carrying a taxadiene synthase transgene elicited with nitric oxide and methyl jasmonate. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	24
30	A rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp Biotechnology Advances, 2014, 32, 1157-1167.	6.0	123
31	Bicyclic and tetracyclic diterpenes from a Trichoderma symbiont of Taxus baccata. Phytochemistry, 2014, 97, 55-61.	1.4	54
32	Synergistic effect of cyclodextrins and methyl jasmonate on taxane production in <i>Taxus x media</i> cell cultures. Plant Biotechnology Journal, 2014, 12, 1075-1084.	4.1	86
33	Xanthomicrol: A Comprehensive Review of Its Chemistry, Distribution, Biosynthesis and Pharmacological Activity. Mini-Reviews in Medicinal Chemistry, 2014, 14, 725-733.	1.1	17
34	Living between two worlds: two-phase culture systems for producing plant secondary metabolites. Critical Reviews in Biotechnology, 2013, 33, 1-22.	5.1	61
35	Influence of hairy root ecotypes on production of tropane alkaloids in Brugmansia candida. Plant Cell, Tissue and Organ Culture, 2013, 114, 305-312.	1.2	12
36	Effect of the culture medium and biotic stimulation on taxane production in Taxus globosa Schltdl in vitro cultures. Acta Physiologiae Plantarum, 2013, 35, 3447-3455.	1.0	16

#	Article	IF	CITATIONS
37	Coronatine, a more powerful elicitor for inducing taxane biosynthesis in Taxus media cell cultures than methyl jasmonate. Journal of Plant Physiology, 2013, 170, 211-219.	1.6	113
38	Phenolic Acids. , 2013, , 1951-1973.		49
39	Production and Genetic Engineering of Terpenoids Production in Plant Cell and Organ Cultures. , 2013, , 2761-2796.		10
40	LC-MS/MS method for the quantification of withaferin-A in plant extracts ofWithaniaspp Acta Chromatographica, 2013, 25, 745-754.	0.7	4
41	Bioprocessing of Plant In Vitro Systems for the Mass Production of Pharmaceutically Important Metabolites: Paclitaxel and its Derivatives. Current Medicinal Chemistry, 2013, 20, 880-891.	1.2	6
42	Biosynthesis of Panaxynol and Panaxydol in Panax ginseng. Molecules, 2013, 18, 7686-7698.	1.7	17
43	Bioprocessing of Plant In Vitro Systems for the Mass Production of Pharmaceutically Important Metabolites: Paclitaxel and its Derivatives. Current Medicinal Chemistry, 2013, 20, 880-891.	1.2	49
44	Bioprocessing of plant in vitro systems for the mass production of pharmaceutically important metabolites: paclitaxel and its derivatives. Current Medicinal Chemistry, 2013, 20, 880-91.	1.2	48
45	Isolation and characterization of Stemphylium sedicola SBU-16 as a new endophytic taxol-producing fungus from Taxus baccata grown in Iran. FEMS Microbiology Letters, 2012, 328, 122-129.	0.7	54
46	Lignans from in vitro cultures of transgenic roots of Taxus x media var. Hicksii. Planta Medica, 2012, 78, .	0.7	0
47	The relationship between TXS, DBAT, BAPT and DBTNBT gene expression and taxane production during the development of Taxus baccata plantlets. Plant Science, 2011, 181, 282-287.	1.7	42
48	Overexpression of the Arabidopsis thaliana squalene synthase gene in Withania coagulans hairy root cultures. Biologia Plantarum, 2011, 55, 357-360.	1.9	44
49	Production of centellosides and phytosterols in cell suspension cultures of Centella asiatica. Plant Cell, Tissue and Organ Culture, 2011, 104, 61-67.	1.2	95
50	Production of the anticancer drug taxol in Taxus baccata suspension cultures: A review. Process Biochemistry, 2011, 46, 23-34.	1.8	311
51	Changes of taxane production and gene expression during the development of in vitro Taxus plant cultures. Planta Medica, 2011, 77, .	0.7	1
52	Podophyllotoxin: Current approaches to its biotechnological production and future challenges. Engineering in Life Sciences, 2010, 10, 281-292.	2.0	77
53	Conversion of α-amyrin into centellosides by plant cell cultures of Centella asiatica. Biotechnology Letters, 2010, 32, 315-319.	1.1	24
54	Metabolic responses of <i>Taxus media</i> transformed cell cultures to the addition of methyl jasmonate. Biotechnology Progress, 2010, 26, 1145-1153.	1.3	70

#	Article	IF	CITATIONS
55	An approach to the molecular mechanism of methyl jasmonate and vanadyl sulphate elicitation in Taxus baccata cell cultures: The role of txs and bapt gene expression. Biochemical Engineering Journal, 2010, 53, 104-111.	1.8	47
56	Centelloside production in Centella asiatica cell suspension cultures elicited with methyl jasmonate. Planta Medica, 2010, 76, .	0.7	3
57	Taxane production in hairy roots of Taxus x media var. Hicksii carrying taxadiene synthase gene. Planta Medica, 2010, 76, .	0.7	0
58	Biotechnological Production of Taxol and Related Taxoids: Current State and Prospects. Anti-Cancer Agents in Medicinal Chemistry, 2009, 9, 109-121.	0.9	117
59	Effect of taxol feeding on taxol and related taxane production in Taxus baccata suspension cultures. New Biotechnology, 2009, 25, 252-259.	2.4	48
60	Overexpression of the Arabidopsis thaliana squalene synthase gene in Withania coagulans hairy root cultures increases the biosynthesis of phytosterols and withanolides. New Biotechnology, 2009, 25, S334.	2.4	2
61	Metabolic and genomic studies in transgenic cell lines of Taxus media. New Biotechnology, 2009, 25, S319-S320.	2.4	0
62	Morphology and withanolide production of <i>Withania coagulans</i> hairy root cultures. Engineering in Life Sciences, 2009, 9, 197-204.	2.0	41
63	Steroidal Lactones from Withania somnifera, an Ancient Plant for Novel Medicine. Molecules, 2009, 14, 2373-2393.	1.7	426
64	Triterpenoid saponin content and the expression level of some related genes in calli of Centella asiatica. Biotechnology Letters, 2008, 30, 1853-1859.	1.1	51
65	Immobilization of Galphimia glauca Plant Cell Suspensions for the Production of Enhanced Amounts of Galphimine-B. Planta Medica, 2008, 74, 94-99.	0.7	20
66	Biotransformation of hyoscyamine into scopolamine in transgenic tobacco cell cultures. Journal of Plant Physiology, 2007, 164, 521-524.	1.6	34
67	Source of isopentenyl diphosphate for taxol and baccatin III biosynthesis in cell cultures of Taxus baccata. Biochemical Engineering Journal, 2007, 33, 159-167.	1.8	37
68	Paclitaxel and baccatin III production induced by methyl jasmonate in free and immobilized cells of Taxus baccata. Biologia Plantarum, 2007, 51, 647-652.	1.9	38
69	Manipulation by culture mixing and elicitation of paclitaxel and baccatin III production in Taxus baccata suspension cultures. In Vitro Cellular and Developmental Biology - Plant, 2006, 42, 422-426.	0.9	24
70	The effect of methyl jasmonate on triterpene and sterol metabolisms of Centella asiatica, Ruscus aculeatus and Galphimia glauca cultured plants. Phytochemistry, 2006, 67, 2041-2049.	1.4	99
71	In vitro micropropagation of Ruscus aculeatus. Biologia Plantarum, 2006, 50, 441-443.	1.9	6
72	Effect of organogenesis on steroidal saponin biosynthesis in calli cultures of Ruscus aculeatus. FìtoterapA¬Ã¢, 2006, 77, 216-220.	1.1	14

#	Article	IF	CITATIONS
73	Identification of triterpenoid compounds ofCentella asiatica by thin-layer chromatography and mass spectrometry. Biomedical Chromatography, 2006, 20, 151-153.	0.8	68
74	Effects of immobilization by entrapment in alginate and scale-up on paclitaxel and baccatin III production in cell suspension cultures ofTaxus baccata. Biotechnology and Bioengineering, 2005, 89, 647-655.	1.7	97
75	Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proceedings of the United States of America, 2004, 101, 6786-6791.	3.3	275
76	The T-DNA ORF8 of the cucumopine-type Agrobacterium rhizogenes Ri plasmid is involved in auxin response in transgenic tobacco. Plant Science, 2004, 166, 557-567.	1.7	14
77	Relationship between peroxidase activity and organogenesis in Panax ginseng calluses. Plant Cell, Tissue and Organ Culture, 2003, 73, 37-41.	1.2	18
78	Elicitation of different Panax ginseng transformed root phenotypes for an improved ginsenoside production. Plant Physiology and Biochemistry, 2003, 41, 1019-1025.	2.8	113
79	Influence of elicitors on taxane production and 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in Taxus media cells. Plant Physiology and Biochemistry, 2003, 41, 91-96.	2.8	41
80	Inhibition of paclitaxel and baccatin III accumulation by mevinolin and fosmidomycin in suspension cultures of Taxus baccata. Journal of Biotechnology, 2003, 101, 157-163.	1.9	66
81	Alkaloid production in Duboisia hybrid hairy roots and plants overexpressing the h6h gene. Plant Science, 2003, 165, 1289-1295.	1.7	80
82	Improved high performance liquid chromatographic determination of ginsenosides inPanax ginseng-based pharmaceuticals using a diol column. Biomedical Chromatography, 2002, 16, 68-72.	0.8	23
83	Improved Paclitaxel and Baccatin III Production in Suspension Cultures of Taxus media. Biotechnology Progress, 2002, 18, 418-423.	1.3	89
84	Influence of auxins on organogenesis and ginsenoside production in Panax ginseng calluses. Plant Cell, Tissue and Organ Culture, 2002, 68, 73-78.	1.2	39
85	Ginsenoside production in different phenotypes of Panax ginseng transformed roots. Phytochemistry, 2001, 57, 365-371.	1.4	88
86	Effect of Benzyladenine and Indolebutyric Acid on Ultrastructure, Glands Formation, and Essential Oil Accumulation in Lavandula Dentata Plantlets. Biologia Plantarum, 2001, 44, 1-6.	1.9	28
87	Datura metel: In Vitro Production of Tropane Alkaloids. Planta Medica, 1999, 65, 144-148.	0.7	34
88	Effect of Agrobacterium rhizogenes T-DNA on alkaloid production in Solanaceae plants. Phytochemistry, 1999, 52, 1287-1292.	1.4	59
89	Title is missing!. Plant Cell, Tissue and Organ Culture, 1999, 58, 177-184.	1.2	54
90	Production of Taxol® and baccatin III by a selected Taxus baccata callus line and its derived cell suspension culture. Plant Science, 1999, 146, 101-107.	1.7	73

#	Article	IF	CITATIONS
91	Relation between the amount of rolC gene product and indole alkaloid accumulation in Catharanthus roseus transformed root cultures. Journal of Plant Physiology, 1998, 153, 712-718.	1.6	91
92	Effect of auxin and phenobarbital on the ultrastructure and digitoxin content in <i>Digitalis purpurea</i> tissue culture. Canadian Journal of Botany, 1996, 74, 378-382.	1.2	9
93	Effects of Auxin and Phenobarbital on Morphogenesis and Production of Digitoxin in Digitalis Callus. Plant and Cell Physiology, 1995, 36, 247-252.	1.5	22
94	Response of <i>Digitalis purpurea</i> plants to temporary salinity. Journal of Plant Nutrition, 1993, 16, 327-335.	0.9	25
95	The Epigenetic Regulation in Plant Specialized Metabolism: DNA Methylation Limits Paclitaxel in vitro Biotechnological Production. Frontiers in Plant Science, 0, 13, .	1.7	9