

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7498742/publications.pdf Version: 2024-02-01

VIINTII

#	Article	IF	CITATIONS
1	Probing the functions of friedelaneâ€type triterpene cyclases from four celastrolâ€producing plants. Plant Journal, 2022, 109, 555-567.	5.7	10
2	Metabolic Engineering of Saccharomyces cerevisiae for High-Level Friedelin via Genetic Manipulation. Frontiers in Bioengineering and Biotechnology, 2022, 10, 805429.	4.1	12
3	Mechanistic analysis for the origin of diverse diterpenes in Tripterygium wilfordii. Acta Pharmaceutica Sinica B, 2022, 12, 2923-2933.	12.0	4
4	The Impact of Ischemic Stroke on Gray and White Matter Injury Correlated With Motor and Cognitive Impairments in Permanent MCAO Rats: A Multimodal MRI-Based Study. Frontiers in Neurology, 2022, 13, 834329.	2.4	10
5	Magnetic Resonance Imaging Investigation of Neuroplasticity After Ischemic Stroke in Tetramethylpyrazine-Treated Rats. Frontiers in Pharmacology, 2022, 13, 851746.	3.5	2
6	Key Glycosyltransferase Genes of <i>Panax notoginseng</i> : Identification and Engineering Yeast Construction of Rare Ginsenosides. ACS Synthetic Biology, 2022, 11, 2394-2404.	3.8	9
7	Biosynthesis, total synthesis, structural modifications, bioactivity, and mechanism of action of the quinoneâ€methide triterpenoid celastrol. Medicinal Research Reviews, 2021, 41, 1022-1060.	10.5	40
8	The chromosome-level reference genome assembly for Panax notoginseng and insights into ginsenoside biosynthesis. Plant Communications, 2021, 2, 100113.	7.7	54
9	Cytochrome P450 catalyses the 29-carboxyl group formation of celastrol. Phytochemistry, 2021, 190, 112868.	2.9	8
10	Trillium tschonoskii rhizomes' saponins induces oligodendrogenesis and axonal reorganization for ischemic stroke recovery in rats. Journal of Ethnopharmacology, 2021, 279, 114358.	4.1	5
11	A cytochrome P450 CYP81AM1 from Tripterygium wilfordii catalyses the C-15 hydroxylation of dehydroabietic acid. Planta, 2021, 254, 95.	3.2	8
12	Effect of Neurorepair for Motor Functional Recovery Enhanced by Total Saponins From Trillium tschonoskii Maxim. Treatment in a Rat Model of Focal Ischemia. Frontiers in Pharmacology, 2021, 12, 763181.	3.5	4
13	Isolation and characterization of a glycosyltransferase with specific catalytic activity towards flavonoids from <i>Tripterygium wilfordii</i> . Journal of Asian Natural Products Research, 2020, 22, 537-546.	1.4	2
14	Identification and functional characterization of squalene epoxidases and oxidosqualene cyclases from Tripterygium wilfordii. Plant Cell Reports, 2020, 39, 409-418.	5.6	20
15	Enhanced white matter reorganization and activated brain glucose metabolism by enriched environment following ischemic stroke: Micro PET/CT and MRI study. Neuropharmacology, 2020, 176, 108202.	4.1	20
16	Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis. Nature Communications, 2020, 11, 971.	12.8	103
17	Engineering chimeric diterpene synthases and isoprenoid biosynthetic pathways enables high-level production of miltiradiene in yeast. Metabolic Engineering, 2020, 60, 87-96.	7.0	72
18	Investigating the Catalytic Activity of Glycosyltransferase on Quercetin from <i>Tripterygium wilfordii</i> . ACS Omega, 2020, 5, 1414-1421.	3.5	5

Yun Lu

#	Article	IF	CITATIONS
19	A specific UDP-glucosyltransferase catalyzes the formation of triptophenolide glucoside from Tripterygium wilfordii Hook. f Phytochemistry, 2019, 166, 112062.	2.9	9
20	Dynamic Alterations in the Gut Microbiota of Collagen-Induced Arthritis Rats Following the Prolonged Administration of Total Glucosides of Paeony. Frontiers in Cellular and Infection Microbiology, 2019, 9, 204.	3.9	44
21	Overexpression and RNAi-mediated downregulation of TwIDI regulates triptolide and celastrol accumulation in Tripterygium wilfordii. Gene, 2018, 679, 195-201.	2.2	9
22	A multifunctional oxidosqualene cyclase from <i>Tripterygium regelii</i> that produces both α- and β-amyrin. RSC Advances, 2018, 8, 23516-23521.	3.6	10
23	Fibroblast growth factor 21 as a possible endogenous factor inhibits apoptosis in cardiac endothelial cells. Chinese Medical Journal, 2010, 123, 3417-21.	2.3	27