William F Schneider

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7498720/william-f-schneider-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

12,162 103 55 212 h-index g-index citations papers 6.53 13,898 6.9 232 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
212	Consequences of adsorbate-adsorbate interactions for apparent kinetics of surface catalytic reactions. <i>Journal of Catalysis</i> , 2022 , 405, 410-418	7.3	1
211	Observation and rationalization of nitrogen oxidation enabled only by coupled plasma and catalyst <i>Nature Communications</i> , 2022 , 13, 402	17.4	1
21 0	CO and C3H6 poisoning of hydrogen permeation across Pd77Ag23 alloy membranes: A comparative study with pure palladium. <i>Chemical Engineering Journal</i> , 2022 , 430, 133080	14.7	2
209	Effects of Brfisted acid site proximity in chabazite zeolites on OH infrared spectra and protolytic propane cracking kinetics. <i>Journal of Catalysis</i> , 2021 , 395, 210-226	7.3	10
208	Inelastic Neutron Scattering Observation of Plasma-Promoted Nitrogen Reduction Intermediates on Ni/EAl2O3. <i>ACS Energy Letters</i> , 2021 , 6, 2048-2053	20.1	3
207	DFT and Microkinetic Comparison of Ru-Doped Porphyrin-like Graphene and Nanotubes toward Catalytic Formic Acid Decomposition and Formation. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 18673-1	18683	0
206	Plasma-catalyst modeling for materials selection: challenges and opportunities in nitrogen oxidation. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 454004	3	1
205	Adsorbate Free Energies from DFT-Derived Translational Energy Landscapes. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 20331-20342	3.8	3
204	Plasma-Catalytic Ammonia Synthesis beyond the Equilibrium Limit. <i>ACS Catalysis</i> , 2020 , 10, 6726-6734	13.1	40
203	Effects of dioxygen pressure on rates of NOx selective catalytic reduction with NH3 on Cu-CHA zeolites. <i>Journal of Catalysis</i> , 2020 , 389, 140-149	7.3	25
202	Experimental and Computational Investigation of the Role of P in Moderating Ethane Dehydrogenation Performance over Ni-Based Catalysts. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 12666-12676	3.9	7
201	Predicted Influence of Plasma Activation on Nonoxidative Coupling of Methane on Transition Metal Catalysts. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 6043-6054	8.3	18
200	DFT and microkinetic comparison of Pt, Pd and Rh-catalyzed ammonia oxidation. <i>Journal of Catalysis</i> , 2020 , 383, 322-330	7.3	14
199	Characteristics of Impactful Computational Contributions to The Journal of Physical Chemistry C. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 13509-13510	3.8	3
198	Cooperative and Competitive Occlusion of Organic and Inorganic Structure-Directing Agents within Chabazite Zeolites Influences Their Aluminum Arrangement. <i>Journal of the American Chemical Society</i> , 2020 , 142, 4807-4819	16.4	47
197	Supercell Models of Brfisted and Lewis Sites in Zeolites 2020 , 1355-1375		1
196	The 2020 plasma catalysis roadmap. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 443001	3	141

(2018-2020)

195	Comparison of Coverage-Dependent Binding Energy Models for Mean-Field Microkinetic Rate Predictions. <i>Langmuir</i> , 2020 , 36, 465-474	4	11
194	Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides. <i>Accounts of Chemical Research</i> , 2020 , 53, 1881-1892	24.3	37
193	Structure- and Temperature-Dependence of Pt-Catalyzed Ammonia Oxidation Rates and Selectivities. <i>ACS Catalysis</i> , 2019 , 9, 2407-2414	13.1	30
192	Influence of the N,N,N-Trimethyl-1-adamantyl Ammonium Structure-Directing Agent on Al Substitution in SSZ-13 Zeolite. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 17454-17458	3.8	12
191	Water-Mediated Reduction of Aqueous N-Nitrosodimethylamine with Pd. <i>Environmental Science & Environmental Science</i>	10.3	7
190	Progress in Accurate Chemical Kinetic Modeling, Simulations, and Parameter Estimation for Heterogeneous Catalysis. <i>ACS Catalysis</i> , 2019 , 9, 6624-6647	13.1	78
189	Distinguishing Plasma Contributions to Catalyst Performance in Plasma-Assisted Ammonia Synthesis. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 8621-8630	8.3	55
188	The impact of transition metal catalysts on macroscopic dielectric barrier discharge (DBD) characteristics in an ammonia synthesis plasma catalysis reactor. <i>Journal Physics D: Applied Physics</i> , 2019 , 52, 224002	3	34
187	Catalysis Enabled by Plasma Activation of Strong Chemical Bonds: A Review. <i>ACS Energy Letters</i> , 2019 , 4, 1115-1133	20.1	111
186	The Periodic Table. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 5837-5848	2.8	1
185	The JPC Periodic Table. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 17063-17074	3.8	1
184	The JPC Periodic Table. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 4051-4062	6.4	1
183	Consequences of exchange-site heterogeneity and dynamics on the UV-visible spectrum of Cu-exchanged SSZ-13. <i>Chemical Science</i> , 2019 , 10, 2373-2384	9.4	53
182	Spectroscopic and kinetic responses of Cu-SSZ-13 to SO2 exposure and implications for NOx selective catalytic reduction. <i>Applied Catalysis A: General</i> , 2019 , 574, 122-131	5.1	33
181	Role of Molecular Modeling in the Development of CO-Reactive Ionic Liquids. <i>Chemical Reviews</i> , 2018 , 118, 5242-5260	68.1	47
180	Machine Learning. Journal of Physical Chemistry A, 2018, 122, 879	2.8	5
179	Machine Learning. Journal of Physical Chemistry B, 2018, 122, 1347	3.4	2
178	Machine Learning. Journal of Physical Chemistry Letters, 2018, 9, 569	6.4	3

177	Benchmark First-Principles Calculations of Adsorbate Free Energies. ACS Catalysis, 2018, 8, 1945-1954	13.1	31
176	Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. <i>Nature Catalysis</i> , 2018 , 1, 269-275	36.5	193
175	Ion Transport in Solvent-Free, Crosslinked, Single-Ion Conducting Polymer Electrolytes for Post-Lithium Ion Batteries. <i>Batteries</i> , 2018 , 4, 28	5.7	25
174	Zeolite Adsorption Free Energies from ab Initio Potentials of Mean Force. <i>Journal of Chemical Theory and Computation</i> , 2018 , 14, 929-938	6.4	36
173	First-Principles Comparison of Proton and Divalent Copper Cation Exchange Energy Landscapes in SSZ-13 Zeolite. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 23564-23573	3.8	25
172	Supercell Models of Brfisted and Lewis Sites in Zeolites 2018 , 1-21		
171	First-Principles Analysis of Site- and Condition-Dependent Fe Speciation in SSZ-13 and Implications for Catalyst Optimization. <i>ACS Catalysis</i> , 2018 , 8, 10119-10130	13.1	33
170	Beyond fossil fuel-driven nitrogen transformations. <i>Science</i> , 2018 , 360,	33.3	772
169	Hybrid Computational Strategy for Predicting CO2 Solubilities in Reactive Ionic Liquids. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 14213-14221	3.8	8
168	Experimental and Computational Interrogation of Fast SCR Mechanism and Active Sites on H-Form SSZ-13. <i>ACS Catalysis</i> , 2017 , 7, 5087-5096	13.1	39
167	Adsorption Energy Correlations at the MetalBupport Boundary. ACS Catalysis, 2017, 7, 4707-4715	13.1	40
166	Binary Approach to Ternary Cluster Expansions: NODVacancy System on Pt(111). <i>Journal of Physical Chemistry C</i> , 2017 , 121, 7344-7354	3.8	19
165	Atomic-Scale Structural Evolution of Rh(110) during Catalysis. ACS Catalysis, 2017, 7, 664-674	13.1	16
164	Importance of metal-oxide interfaces in heterogeneous catalysis: A combined DFT, microkinetic, and experimental study of water-gas shift on Au/MgO. <i>Journal of Catalysis</i> , 2017 , 345, 157-169	7.3	86
163	Participation of interfacial hydroxyl groups in the water-gas shift reaction over Au/MgO catalysts. <i>Catalysis Science and Technology</i> , 2017 , 7, 5257-5266	5.5	14
162	New Physical Insights from a Computational Catalysis Perspective. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 15491-15492	3.8	1
161	Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites. <i>Nature Communications</i> , 2017 , 8, 200	17.4	264
160	Dynamic multinuclear sites formed by mobilized copper ions in NO selective catalytic reduction. <i>Science</i> , 2017 , 357, 898-903	33.3	458

(2014-2016)

159	Catalysis Science of NOx Selective Catalytic Reduction With Ammonia Over Cu-SSZ-13 and Cu-SAPO-34. <i>Advances in Catalysis</i> , 2016 , 1-107	2.4	38
158	Anion Dependent Dynamics and Water Solubility Explained by Hydrogen Bonding Interactions in Mixtures of Water and Aprotic Heterocyclic Anion Ionic Liquids. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 12679-12686	3.4	15
157	Periodic DFT Characterization of NOx Adsorption in Cu-Exchanged SSZ-13 Zeolite Catalysts. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 27934-27943	3.8	22
156	Tracking Iodide and Bromide Ion Segregation in Mixed Halide Lead Perovskites during Photoirradiation. <i>ACS Energy Letters</i> , 2016 , 1, 290-296	20.1	251
155	CO2 Chemistry of Phenolate-Based Ionic Liquids. <i>Journal of Physical Chemistry B</i> , 2016 , 120, 1509-17	3.4	49
154	Band structure of germanium carbides for direct bandgap silicon photonics. <i>Journal of Applied Physics</i> , 2016 , 120, 053102	2.5	15
153	Catalysis in a Cage: Condition-Dependent Speciation and Dynamics of Exchanged Cu Cations in SSZ-13 Zeolites. <i>Journal of the American Chemical Society</i> , 2016 , 138, 6028-48	16.4	405
152	Band Anticrossing in Dilute Germanium Carbides Using Hybrid Density Functionals. <i>Journal of Electronic Materials</i> , 2016 , 45, 2121-2126	1.9	4
151	Comparison of cluster expansion fitting algorithms for interactions at surfaces. <i>Surface Science</i> , 2015 , 640, 104-111	1.8	30
150	Speciation, conductivities, diffusivities, and electrochemical reduction as a function of water content in mixtures of hydrated chromium chloride/choline chloride. <i>Journal of Physical Chemistry B</i> , 2015, 119, 6018-23	3.4	26
149	Differences between thermal and laser-induced diffusion. <i>Physical Review Letters</i> , 2015 , 114, 146104	7.4	12
148	DFT Analysis of NO Oxidation Intermediates on Undoped and Doped LaCoO3 Perovskite. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 20488-20494	3.8	36
147	First-Principles Analysis of Structure Sensitivity in NO Oxidation on Pt. ACS Catalysis, 2015, 5, 1087-109	913.1	29
146	Identification of the active Cu site in standard selective catalytic reduction with ammonia on Cu-SSZ-13. <i>Journal of Catalysis</i> , 2014 , 312, 87-97	7.3	247
145	NO oxidation: A probe reaction on Cu-SSZ-13. <i>Journal of Catalysis</i> , 2014 , 312, 179-190	7.3	133
144	First-principles reaction site model for coverage-sensitive surface reactions: Pt(111)D temperature programmed desorption. <i>Surface Science</i> , 2014 , 622, L1-L6	1.8	23
143	Coverage-Dependent Adsorption at a Low Symmetry Surface: DFT and Statistical Analysis of Oxygen Chemistry on Kinked Pt(321). <i>Topics in Catalysis</i> , 2014 , 57, 89-105	2.3	23
142	DFT comparison of intrinsic WGS kinetics over Pd and Pt. <i>Journal of Catalysis</i> , 2014 , 320, 106-117	7.3	84

141	Trends in Atomic Adsorption on Pt3M(111) Transition Metal Bimetallic Surface Overlayers. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 8342-8349	3.8	12
140	Competing reactions of CO2 with cations and anions in azolide ionic liquids. <i>ChemSusChem</i> , 2014 , 7, 19	7%.5	47
139	Chemically tunable ionic liquids with aprotic heterocyclic anion (AHA) for CO(2) capture. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 5740-51	3.4	176
138	LDA+U evaluation of the stability of low-index facets of LaCoO3 perovskite. <i>Surface Science</i> , 2014 , 619, 71-76	1.8	21
137	Isolation of the Copper Redox Steps in the Standard Selective Catalytic Reduction on Cu-SSZ-13. <i>Angewandte Chemie</i> , 2014 , 126, 12022-12027	3.6	35
136	Performance implications of chemical absorption for the carbon-dioxide-cofluid refrigeration cycle. <i>International Journal of Refrigeration</i> , 2014 , 46, 196-206	3.8	9
135	Implications of coverage-dependent O adsorption for catalytic NO oxidation on the late transition metals. <i>Catalysis Science and Technology</i> , 2014 , 4, 4356-4365	5.5	44
134	Isolation of the copper redox steps in the standard selective catalytic reduction on Cu-SSZ-13. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 11828-33	16.4	245
133	Solid-state covalent capture of CO2 by using N-heterocyclic carbenes. <i>Chemistry - A European Journal</i> , 2013 , 19, 11134-8	4.8	27
132	Structure and dynamics of uranyl(VI) and plutonyl(VI) cations in ionic liquid/water mixtures via molecular dynamics simulations. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 10852-68	3.4	32
131	Structure Sensitivity Study of Waterborne Contaminant Hydrogenation Using Shape- and Size-Controlled Pd Nanoparticles. <i>ACS Catalysis</i> , 2013 , 3, 453-463	13.1	62
130	Development and application of effective pairwise potentials for $UO2(n+)$, $NpO2(n+)$, $PuO2(n+)$, and $AmO2(n+)$ ($n = 1, 2$) ions with water. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 15954-63	3.6	35
129	Experimental and Computational Investigation of Effect of Sr on NO Oxidation and Oxygen Exchange for La1\(\mathbb{B}\)SrxCoO3 Perovskite Catalysts. <i>ACS Catalysis</i> , 2013 , 3, 2719-2728	13.1	64
128	Site specific carboxylation of abnormal anionic N-heterocyclic dicarbenes with CO2. <i>Chemical Communications</i> , 2013 , 49, 11527-9	5.8	21
127	Evaluation of ionic fluids as lubricants in manufacturing. <i>Journal of Manufacturing Processes</i> , 2013 , 15, 414-418	5	15
126	Catalytic Hydrogenation of CO2 to Formic Acid with Silica-Tethered Iridium Catalysts. <i>ChemCatChem</i> , 2013 , 5, 1769-1771	5.2	79
125	Accurate coverage-dependence incorporated into first-principles kinetic models: Catalytic NO oxidation on Pt (111). <i>Journal of Catalysis</i> , 2012 , 286, 88-94	7.3	125
124	First-principles-guided design of ionic liquids for CO2 capture. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 13163-70	3.6	70

(2010-2012)

Performance of Cluster Expansions of Coverage-Dependent Adsorption of Atomic Oxygen on Pt(111). <i>Journal of Chemical Theory and Computation</i> , 2012 , 8, 264-73	6.4	79
Comparative chemistries of CO and NO oxidation over RuO2(110): insights from first-principles thermodynamics and kinetics. <i>Molecular Simulation</i> , 2012 , 38, 615-630	2	10
Interplay between subsurface ordering, surface segregation, and adsorption on Pt-Ti(111) near-surface alloys. <i>Langmuir</i> , 2012 , 28, 4683-93	4	24
Influence of dipole-dipole interactions on coverage-dependent adsorption: CO and NO on Pt(111). <i>Langmuir</i> , 2012 , 28, 8408-17	4	58
Configurational control in catalysis: Perspective on Hess et al., One-dimensional confinement in heterogeneous catalysis: Trapped oxygen on RuO2(110) model catalysts. <i>Surface Science</i> , 2012 , 606, 1351-1352	1.8	6
How low can you go? Minimum energy pathways for O2 dissociation on Pt(111). <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 16677-85	3.6	48
Critical review of Pd-based catalytic treatment of priority contaminants in water. <i>Environmental Science & Environmental Scie</i>	10.3	287
Response to Comment on T ritical Review of Pd-Based Catalytic Treatment of Priority Contaminants in Water <i>Environmental Science & Environmental Scie</i>	10.3	9
Aqueous N2O Reduction with H2 Over Pd-Based Catalyst: Mechanistic Insights From Experiment and Simulation. <i>Topics in Catalysis</i> , 2012 , 55, 300-312	2.3	10
Integrated operando X-ray absorption and DFT characterization of CuBSZ-13 exchange sites during the selective catalytic reduction of NOx with NH3. <i>Catalysis Today</i> , 2012 , 184, 129-144	5.3	187
Ordering and Oxygen Adsorption in AuPt/Pt(111) Surface Alloys. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 17915-17924	3.8	35
Potential energy surfaces for oxygen adsorption, dissociation, and diffusion at the Pt(321) surface. <i>Langmuir</i> , 2011 , 27, 8177-86	4	34
Direct control of electron transfer to the surface-CO bond on a Pt/TiO2 catalytic diode. <i>Journal of the American Chemical Society</i> , 2011 , 133, 16459-67	16.4	34
First-principles cluster expansion study of missing-row reconstructions of fcc (110) surfaces. <i>Physical Review B</i> , 2011 , 83,	3.3	22
DFT Comparison of N-Nitrosodimethylamine Decomposition Pathways Over Ni and Pd. <i>ChemCatChem</i> , 2011 , 3, 898-903	5.2	9
Adsorption and reactions of NOx on RuO2(1 1 0). Catalysis Today, 2011, 165, 49-55	5.3	21
Molecular Design of High Capacity, Low Viscosity, Chemically Tunable Ionic Liquids for CO2 Capture. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 3494-3499	6.4	335
Bulk and Surface Properties of Rutile TiO2 from Self-Consistent-Charge Density Functional Tight Binding. <i>Journal of Chemical Theory and Computation</i> , 2010 , 6, 499-507	6.4	30
	Pt(111). Journal of Chemical Theory and Computation, 2012, 8, 264-73 Comparative chemistries of CO and NO oxidation over RuO2(110): insights from first-principles thermodynamics and kinetics. Molecular Simulation, 2012, 38, 615-630 Interplay between subsurface ordering, surface segregation, and adsorption on Pt-Ti(111) near-surface alloys. Langmulir, 2012, 28, 4683-93 Influence of dipole-dipole interactions on coverage-dependent adsorption: CO and NO on Pt(111). Langmulir, 2012, 28, 8408-17 Configurational control in catalysis: Perspective on Hess et al., One-dimensional confinement in heterogeneous catalysis: Trapped oxygen on RuO2(110) model catalysts. Surface Science, 2012, 606, 1331-1352 How low can you go? Minimum energy pathways for O2 dissociation on Pt(111). Physical Chemistry Chemical Physics, 2012, 14, 16677-85 Critical review of Pd-based catalytic treatment of priority contaminants in water. Environmental Science & Amp; Technology, 2012, 46, 3655-70 Response to Comment on Britical Review of Pd-Based Catalytic Treatment of Priority Contaminants in WaterilEnvironmental Science & Amp; Technology, 2012, 46, 11469-11470 Aqueous N2O Reduction with H2 Over Pd-Based Catalyst: Mechanistic Insights From Experiment and Simulation. Topics in Catalysis, 2012, 55, 300-312 Integrated operando X-ray absorption and DFT characterization of CuBSZ-13 exchange sites during the selective catalytic reduction of NOx with NH3. Catalysis Today, 2012, 184, 129-144 Ordering and Oxygen Adsorption in AuBt/Pt(111) Surface Alloys. Journal of Physical Chemistry C, 2011, 115, 17915-17924 Potential energy surfaces for oxygen adsorption, dissociation, and diffusion at the Pt(321) surface. Langmul, 2011, 27, 2177-86 Direct control of electron transfer to the surface-CO bond on a Pt/TiO2 catalytic diode. Journal of the American Chemical Society, 2011, 133, 16459-67 First-principles cluster expansion study of missing-row reconstructions of fcc (110) surfaces. Physical Review B, 2011, 38, 898-903 Adsorption and reactions of N	Comparative chemistries of CO and NO oxidation over RuO2(110): insights from first-principles thermodynamics and kinetics. <i>Molecular Simulation</i> , 2012, 38, 615-630 Interplay between subsurface ordering, surface segregation, and adsorption on Pt-Ti(111) near-surface alloys. <i>Langmuir</i> , 2012, 28, 4683-93 Influence of dipole-dipole interactions on coverage-dependent adsorption: CO and NO on Pt(111). <i>Langmuir</i> , 2012, 28, 8408-17 Configurational control in catalysis: Perspective on Hess et al., One-dimensional confinement in heterogeneous catalysis: Trapped oxygen on RuO2(110) model catalysts. <i>Surface Science</i> , 2012, 606, 1351-1352 How low can you go? Minimum energy pathways for O2 dissociation on Pt(111). <i>Physical Chemistry Chemical Physics</i> , 2012, 14, 16677-85 Critical review of Pd-based catalytic treatment of priority contaminants in water. <i>Environmental Science & Technology</i> , 2012, 46, 3655-70 Response to Comment on Eritical Review of Pd-Based Catalytic Treatment of Priority Contaminants in Waterlisnironmental <i>Science & Technology</i> , 2012, 46, 11469-11470 Aqueous N2O Reduction with H2 Over Pd-Based Catalytic Mechanistic Insights From Experiment and Simulation. <i>Topics in Catalysis</i> , 2012, 55, 300-312 Integrated operando X-ray absorption and DFT characterization of CuSSZ-13 exchange sites during the selective catalytic reduction of NOx with NH3. <i>Catalysis Today</i> , 2012, 184, 129-144 Ordering and Oxygen Adsorption in AuPt/Pt(111) Surface Alloys. <i>Journal of Physical Chemistry C</i> , 2011, 115, 17915-17924 Potential energy surfaces for oxygen adsorption, dissociation, and diffusion at the Pt(321) surface. <i>Langmuir</i> , 2011, 27, 8177-86 Direct control of electron transfer to the surface-CO bond on a Pt/TiO2 catalytic diode. <i>Journal of the American Chemical Society</i> , 2011, 133, 16459-67 First-principles cluster expansion study of missing-row reconstructions of fcc (110) surfaces. <i>Physical Review B</i> , 2011, 3, 898-903 Adsorption and reactions of NOx on RuO2(1 1 0). <i>Catalysis Today</i> , 2011, 165,

105	Enhancement of oxyanion and diatrizoate reduction kinetics using selected azo dyes on Pd-based catalysts. <i>Environmental Science & Environmental Scien</i>	10.3	30
104	Nature and role of surface carbonates and bicarbonates in CO oxidation over RuO(2). <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 6367-74	3.6	24
103	DFT-Based Coverage-Dependent Model of Pt-Catalyzed NO Oxidation. <i>ChemCatChem</i> , 2010 , 2, 1450-14	692	77
102	Computational Comparison of Tethering Strategies for Amine Functionalised Ionic Liquids. <i>ACS Symposium Series</i> , 2010 , 419-430	0.4	10
101	Equimolar CO(2) absorption by anion-functionalized ionic liquids. <i>Journal of the American Chemical Society</i> , 2010 , 132, 2116-7	16.4	689
100	Computational comparison of the reactions of substituted amines with CO(2). <i>ChemSusChem</i> , 2010 , 3, 931-8	8.3	48
99	Influence of ⊞lumina supports on oxygen binding to Pd, Ag, Pt, and Au. <i>Chemical Physics Letters</i> , 2010 , 484, 231-236	2.5	16
98	Molecular origins of surface poisoning during CO oxidation over RuO2(1 1 0). <i>Surface Science</i> , 2009 , 603, L91-L94	1.8	12
97	Oxygen-coverage effects on molecular dissociations at a Pt metal surface. <i>Physical Review Letters</i> , 2009 , 102, 076101	7.4	94
96	Intermediates and Spectators in O2 Dissociation at the RuO2(110) Surface. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 15266-15273	3.8	50
95	Density Functional Theory Comparison of Water Dissociation Steps on Cu, Au, Ni, Pd, and Pt. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 7269-7276	3.8	220
94	DFT Investigation of Intermediate Steps in the Hydrolysis of ⊞Al2O3(0001) <i>Journal of Physical Chemistry C</i> , 2009 , 113, 2149-2158	3.8	63
93	A periodic density functional theory analysis of CO chemisorption on Pt(111) in the presence of uniform electric fields. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 4125-33	2.8	47
92	Thermodynamics of Environment-Dependent Oxygen Chemisorption on Pt(111) <i>Journal of Physical Chemistry C</i> , 2008 , 112, 9559-9572	3.8	160
91	Experimental and computational investigation of gas-phase reaction of chlorine with n-propanol: observation of chloropropanol conformational isomerization at room temperature. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 2773-81	2.8	8
90	A first-principles investigation of the effect of Pt cluster size on CO and NO oxidation intermediates and energetics. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 6009-18	3.6	42
89	DFT characterization of coverage dependent molecular water adsorption modes on 🖽 l2O3(0 0 0 1). <i>Surface Science</i> , 2008 , 602, 268-275	1.8	63
88	Surface termination effects on metal atom adsorption on ⊞lumina. <i>Surface Science</i> , 2008 , 602, 3445-34	53 .8	25

(2004-2008)

87	Coupled theoretical and experimental analysis of surface coverage effects in Pt-catalyzed NO and O2 reaction to NO2 on Pt(111). <i>Catalysis Today</i> , 2008 , 136, 84-92	5.3	71
86	Kinetics and mechanism of the gas phase reaction of chlorine atoms with i-propanol. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 4211-7	3.6	14
85	Chemistry for a sustainable future. Environmental Science & Eamp; Technology, 2007, 41, 4840-6	10.3	27
84	Transferable Force Field for Water Adsorption in Cation-Exchanged Titanosilicates. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 5754-5765	3.9	3
83	DFT-Based Characterization of the Multiple Adsorption Modes of Nitrogen Oxides on Pt(111). Journal of Physical Chemistry C, 2007 , 111, 389-397	3.8	76
82	Catalysis by Design - Theoretical and Experimental Studies of Model Catalysts 2007,		2
81	Effects of coverage on the structures, energetics, and electronics of oxygen adsorption on RuO2(110). <i>Journal of Chemical Physics</i> , 2007 , 127, 064706	3.9	41
80	NO oxidation over supported Pt: Impact of precursor, support, loading, and processing conditions evaluated via high throughput experimentation. <i>Applied Catalysis B: Environmental</i> , 2006 , 67, 246-256	21.8	74
79	Effect of particle size on the oxidizability of platinum clusters. <i>Journal of Physical Chemistry A</i> , 2006 , 110, 5839-46	2.8	62
78	Thermodynamic equilibrium compositions, structures, and reaction energies of $Pt(x)O(y)$ (x = 1-3) clusters predicted from first principles. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 16591-9	3.4	44
77	Theoretical Aspects of Oxide Particle Stability and Chemical Reactivity 2006 , 289-309		
76	A thermogravimetric determination of dispersed and bulk-like barium species supported on Ealumina. <i>Journal of Materials Chemistry</i> , 2005 , 15, 366-368		8
75	Thermal decomposition of dispersed and bulk-like NOx species in model NOx trap materials. <i>Applied Catalysis B: Environmental</i> , 2005 , 61, 164-175	21.8	34
74	NO oxidation properties of Pt(111) revealed by ab initio kinetic simulations. <i>Physical Review B</i> , 2005 , 71,	3.3	63
73	Molecular Origins of Selectivity in the Reduction of NOxby NH3. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 9365-9374	2.8	22
72	Qualitative Differences in the Adsorption Chemistry of Acidic (CO2, SOx) and Amphiphilic (NOx) Species on the Alkaline Earth Oxides. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 273-282	3.4	138
71	Chemistry of Sulfur Oxides on Transition Metals. III. Oxidation of SO2 and Self-Diffusion of O, SO2, and SO3 on Pt(111). <i>Journal of Physical Chemistry B</i> , 2004 , 108, 13329-13340	3.4	39
70	Chemistry of Sulfur Oxides on Transition Metals. II. Thermodynamics of Sulfur Oxides on Platinum(111). <i>Journal of Physical Chemistry B</i> , 2004 , 108, 250-264	3.4	40

69	CF3CH(ONO)CF3: Synthesis, IR spectrum, and use as OH radical source for kinetic and mechanistic studies. <i>International Journal of Chemical Kinetics</i> , 2003 , 35, 159-165	1.4	6
68	Characterization of adsorption trends of NO2, nitrite, and nitrate on MgO terraces. <i>Surface Science</i> , 2003 , 546, 75-86	1.8	18
67	First-Principles Characterization of NOx Adsorption on MgO. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 157-163	3.4	42
66	Kinetics of Elementary Reactions in the Chain Chlorination of Cyclopropane. <i>Journal of Physical Chemistry A</i> , 2003 , 107, 2003-2010	2.8	12
65	Analysis of the thermodynamic feasibility of NOx decomposition catalysis to meet next generation vehicle NOx emissions standards. <i>Applied Catalysis B: Environmental</i> , 2002 , 37, 263-277	21.8	20
64	Simulated performance and cofluid dependence of a CO2-cofluid refrigeration cycle with wet compression. <i>International Journal of Refrigeration</i> , 2002 , 25, 1123-1136	3.8	8
63	Dramatic Cooperative Effects in Adsorption of NOx on MgO(001). <i>Journal of Physical Chemistry B</i> , 2002 , 106, 7405-7413	3.4	75
62	Formation of methane sulfinic acid in the gas-phase OH-radical initiated oxidation of dimethyl sulfoxide. <i>Environmental Science & Environmental Scien</i>	10.3	43
61	Chemistry of Sulfur Oxides on Transition Metals I: ©Configurations, Energetics, Orbital Analyses, and Surface Coverage Effects of SO2on Pt(111). <i>Journal of Physical Chemistry B</i> , 2002 , 106, 12575-12583	3.4	55
60	Theoretical Analysis of N2O to N2 Conversion During the Catalytic Decomposition of NO by Cu-Zeolites. <i>Catalysis Letters</i> , 2001 , 74, 193-199	2.8	26
59	Effect of Particle Size on the Adsorption of O and S Atoms on Pt: A Density-Functional Theory Study. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 7739-7747	3.4	62
58	Combined Computational and Experimental Investigation of SOx Adsorption on MgO. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 6972-6979	3.4	66
57	Stability and infrared spectra of mono-, di-, and trichloromethanol. <i>Chemical Physics Letters</i> , 2000 , 322, 97-102	2.5	43
56	Statistical analysis of Al distributions and metal ion pairing probabilities in zeolites. <i>Catalysis Letters</i> , 2000 , 68, 85-93	2.8	40
55	Cycle-Model Assessment of Working Fluids for a Low-Pressure CO2 Climate Control System 2000 ,		4
54	First-Principles Molecular Dynamics Simulations of H2O on FAl2O3 (0001). <i>Journal of Physical Chemistry B</i> , 2000 , 104, 5527-5540	3.4	187
53	Thermodynamic and Cycle Models for a Low-Pressure CO2 Refrigeration Cycle 1999 ,		6
52	CO oxidation catalyzed by Cu-exchanged zeolites: a density functional theory study. <i>Catalysis Letters</i> , 1999 , 61, 179-186	2.8	6

51	Density functional studies of adsorbates in Cu-exchanged zeolites: model comparisons and SOx binding. <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 639-648	3.6	38
50	Cluster Model Studies of Oxygen-Bridged Cu Pairs in Cu Z SM-5 Catalysts. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 10452-10460	3.4	54
49	Comparison of Explicit and United Atom Models for Alkane Chains Physisorbed on ⊞Al2O3 (0001). Journal of Physical Chemistry B, 1999 , 103, 3885-3895	3.4	47
48	Theoretical analysis of oxygen-bridged Cu pairs in Cu-exchanged zeolites. <i>Catalysis Letters</i> , 1998 , 56, 183-188	2.8	55
47	CF3CFHOliadical: Decomposition vs. reaction with O2. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998 , 102, 1850-1856		18
46	Atmospheric chemistry of acetone: Kinetic study of the CH3C(O)CH2O2+NO/NO2 reactions and decomposition of CH3C(O)CH2O2NO2. <i>International Journal of Chemical Kinetics</i> , 1998 , 30, 475-489	1.4	26
45	The chemistry of water on alumina surfaces: reaction dynamics from first principles. <i>Science</i> , 1998 , 282, 265-8	33.3	446
44	Density Functional Theory Study of Transformations of Nitrogen Oxides Catalyzed by Cu-Exchanged Zeolites. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 3692-3705	3.4	79
43	Atmospheric Chemistry of the Phenoxy Radical, C6H5O() UV Spectrum and Kinetics of Its Reaction with NO, NO2, and O2. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 7964-7974	2.8	91
42	Simulations of hydrocarbon adsorption and subsequent water penetration on an aluminum oxide surface. <i>Journal of Chemical Physics</i> , 1997 , 106, 7331-7342	3.9	35
41	Novel Structural Modifications Associated with the Highly Efficient Internal Conversion of 2-(2EHydroxyphenyl)benzotriazole Ultraviolet Stabilizers. <i>Journal of the American Chemical Society</i> , 1997 , 119, 5445-5446	16.4	25
40	Theoretical Study of CO and NO Vibrational Frequencies in CuWater Clusters and Implications for Cu-Exchanged Zeolites. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 1940-1949	3.4	33
39	First-Principles Analysis of Elementary Steps in the Catalytic Decomposition of NO by Cu-Exchanged Zeolites. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 4353-4357	3.4	58
38	Atmospheric Chemistry of HFE-7100 (C4F9OCH3): Reaction with OH Radicals, UV Spectra and Kinetic Data for C4F9OCH2Eand C4F9OCH2OERadicals, and the Atmospheric Fate of C4F9OCH2OERadicals. <i>Journal of Physical Chemistry A</i> , 1997 , 101, 8264-8274	2.8	110
37	Cu D initrosyl Species in Zeolites: A Density Functional Molecular Cluster Study. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 6903-6913	3.4	48
36	Atmospheric Chemistry and Environmental Impact of Hydrofluorocarbons and Hydrochlorofluorocarbons. <i>ACS Symposium Series</i> , 1997 , 16-30	0.4	
35	Energetics and Mechanism of Decomposition of CF3OH. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 6097-6103		42
34	Kinetics and Mechanisms of the Self-Reactions of CCl3O2 and CHCl2O2 Radicals and Their Reactions with HO2. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 14356-14371		73

33	Cluster Models of Cu Binding and CO and NO Adsorption in Cu-Exchanged Zeolites. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 6032-6046		83
32	Reliability of Small Cluster Models for Cu-Exchanged Zeolites. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 9292-9301		43
31	Kinetics and mechanism of the reaction of Cl atoms with CH2 CO (Ketene). <i>International Journal of Chemical Kinetics</i> , 1996 , 28, 627-635	1.4	21
30	Atmospheric chemistry of CH3Cl: mechanistic study of the reaction of CH2ClO2 radicals with HO2. <i>Chemical Physics Letters</i> , 1996 , 251, 164-173	2.5	48
29	Density functional theory description of excited-state intramolecular proton transfer. <i>Chemical Physics Letters</i> , 1996 , 263, 414-422	2.5	26
28	Density functional theory studies of Cu-zeolite de-NOx catalysts. <i>Journal of Computer-Aided Materials Design</i> , 1996 , 3, 210-212		
27	Accounting for electron lectron and electron lettice effects in conjugated chains and rings. Journal of Chemical Physics, 1996, 104, 9511-9527	3.9	3
26	The vibrational spectrum of FC(O)O radical: A challenging case for single-reference electron correlation methods. <i>Journal of Chemical Physics</i> , 1995 , 103, 6601-6607	3.9	19
25	Atmospheric Chemistry of FNO and FNO2: Reactions of FNO with O3, O(3P), HO2, and HCl and the Reaction of FNO2 with O3. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 984-989		20
24	Comment on "Ab Initio Study of the Abstraction Reactions of CF3O". <i>The Journal of Physical Chemistry</i> , 1995 , 99, 4353-4353		4
23	Atmospheric Chemistry of CF3OH: Is Photolysis Important?. <i>Environmental Science & Environmental Scien</i>	10.3	22
22	Bond Strength Trends in Halogenated Methanols: Evidence for Negative Hyperconjugation?. <i>Journal of the American Chemical Society</i> , 1995 , 117, 478-485	16.4	53
21	Hydrofluorocarbons and stratospheric ozone. Faraday Discussions, 1995, 100, 55	3.6	54
20	Atmospheric chemistry of FCOx radicals: Kinetic and mechanistic study of the FC(O)O2 + NO2 reaction. <i>International Journal of Chemical Kinetics</i> , 1995 , 27, 391-402	1.4	17
19	Reply to "Comment on the Thermochemistry of the CF3O Radical and CF3OH". <i>The Journal of Physical Chemistry</i> , 1994 , 98, 2217-2218		10
18	Thermochemistry of COF2 and Related Compounds. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 7448-	7451	33
17	Mechanistic study of the gas-phase reaction of CH2FO2 radicals with HO2. <i>Chemical Physics Letters</i> , 1994 , 218, 34-42	2.5	42
16	Atmospheric chemistry of HFC-134a. Kinetic and mechanistic study of the CF3CFHO2+NO2 reaction. <i>Chemical Physics Letters</i> , 1994 , 225, 375-380	2.5	11

LIST OF PUBLICATIONS

15	The Environmental Impact of CFC Replacements HFCs and HCFCs. <i>Environmental Science & Environmental Sc</i>	10.3	28
14	The environmental impact of CFC replacements - HFCs and HCFCs. <i>Environmental Science & Environmental </i>	10.3	82
13	The Stratospheric Fate of CF3OH. Environmental Science & Eamp; Technology, 1994, 28, 1198-200	10.3	158
12	Comment on the Atmospheric Chemistry of FNO. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 10373-103	373	7
11	Rate coefficient for the reaction of hydroxymethyl radicals with chlorine and infrared spectra of chloromethanol and dichloromethanol. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 1576-1582		40
10	Atmospheric chemistry of trifluoromethoxy radicals: reaction with water. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 7606-7611		45
9	Ab initio investigation of the heats of formation of several trifluoromethyl compounds. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 12783-12788		55
8	Kinetic study of the reaction CF3O+O3-CF3O2+O2. Chemical Physics Letters, 1993, 213, 442-448	2.5	29
7	Alcoholysis of nitriles in gold(III) complexes: The structure of [EtC(OEt)NH2]+[AuCl4][[Polyhedron, 1991, 10, 1631-1637]	2.7	16
6	Structure and bonding trends in two- and three-coordinate boron cations. <i>Inorganic Chemistry</i> , 1991 , 30, 3919-3927	5.1	28
5	Electronic structure of asymmetric metal-metal multiple bonds: the d2-d6 molybdenum phosphine-alkoxide complexes X4Mo-Mo(Ph3)4 (X = OH, Cl). <i>Inorganic Chemistry</i> , 1989 , 28, 3292-3296	5.1	10
4	CHAPTER 2:First-principles Thermodynamic Models in Heterogeneous Catalysis. RSC Catalysis Series,59-	-101.5	8
3	Computational Screening for Improved Heterogeneous Catalysts and Electrocatalysts139-159		
2	First-Principles Approaches to Understanding Heterogeneous Catalysis115-138		
1	Plasma Catalysis for Ammonia Synthesis: A Microkinetic Modeling Study on the Contributions of Eley R ideal Reactions. <i>ACS Sustainable Chemistry and Engineering</i> ,	8.3	8